PDE问题的物理信息神经网络:一个全面的回顾

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kuang Luo, Jingshang Zhao, Yingping Wang, Jiayao Li, Junjie Wen, Jiong Liang, Henry Soekmadji, Shaolin Liao
{"title":"PDE问题的物理信息神经网络:一个全面的回顾","authors":"Kuang Luo,&nbsp;Jingshang Zhao,&nbsp;Yingping Wang,&nbsp;Jiayao Li,&nbsp;Junjie Wen,&nbsp;Jiong Liang,&nbsp;Henry Soekmadji,&nbsp;Shaolin Liao","doi":"10.1007/s10462-025-11322-7","DOIUrl":null,"url":null,"abstract":"<div><p>As AI for Science continues to grow, Physics-informed neural networks (PINNs) have emerged as a transformative approach within the realm of scientific computing and deep learning, offering a robust and flexible framework for solving partial differential equations (PDEs) and other complex physical systems. By embedding physical laws directly into the architecture of neural networks, PINNs enable the integration of domain-specific knowledge, ensuring that the models adhere to known physics while fitting available data. In this paper, we provide a comprehensive overview of the state-of-the-art advancements and applications of PINNs across a broad spectrum of PDE problems. In particular, focus is given on the PINN architectures, data resampling methods for PINN, loss and activation functions, feature embedding methods and so on. What’s more, the potential future directions and the anticipated evolution of PINNs are also discussed. We aim to provide valuable insights into PINNs for PDE problems, with hope to encourage further exploration and research in this promising area.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11322-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Physics-informed neural networks for PDE problems: a comprehensive review\",\"authors\":\"Kuang Luo,&nbsp;Jingshang Zhao,&nbsp;Yingping Wang,&nbsp;Jiayao Li,&nbsp;Junjie Wen,&nbsp;Jiong Liang,&nbsp;Henry Soekmadji,&nbsp;Shaolin Liao\",\"doi\":\"10.1007/s10462-025-11322-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As AI for Science continues to grow, Physics-informed neural networks (PINNs) have emerged as a transformative approach within the realm of scientific computing and deep learning, offering a robust and flexible framework for solving partial differential equations (PDEs) and other complex physical systems. By embedding physical laws directly into the architecture of neural networks, PINNs enable the integration of domain-specific knowledge, ensuring that the models adhere to known physics while fitting available data. In this paper, we provide a comprehensive overview of the state-of-the-art advancements and applications of PINNs across a broad spectrum of PDE problems. In particular, focus is given on the PINN architectures, data resampling methods for PINN, loss and activation functions, feature embedding methods and so on. What’s more, the potential future directions and the anticipated evolution of PINNs are also discussed. We aim to provide valuable insights into PINNs for PDE problems, with hope to encourage further exploration and research in this promising area.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11322-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11322-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11322-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

随着科学人工智能的不断发展,物理信息神经网络(pinn)已经成为科学计算和深度学习领域的一种变革性方法,为求解偏微分方程(PDEs)和其他复杂的物理系统提供了一个强大而灵活的框架。通过将物理定律直接嵌入到神经网络的体系结构中,pinn能够集成特定领域的知识,确保模型在拟合可用数据的同时遵循已知的物理规律。在本文中,我们提供了一个全面的概述,在广泛的PDE问题中,pin - n的最新进展和应用。重点介绍了pin网络的结构、pin网络的数据重采样方法、损失函数和激活函数、特征嵌入方法等。并对未来的发展方向和未来的发展趋势进行了展望。我们的目标是为PDE问题提供有价值的pinn见解,希望鼓励在这个有前途的领域进一步探索和研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-informed neural networks for PDE problems: a comprehensive review

As AI for Science continues to grow, Physics-informed neural networks (PINNs) have emerged as a transformative approach within the realm of scientific computing and deep learning, offering a robust and flexible framework for solving partial differential equations (PDEs) and other complex physical systems. By embedding physical laws directly into the architecture of neural networks, PINNs enable the integration of domain-specific knowledge, ensuring that the models adhere to known physics while fitting available data. In this paper, we provide a comprehensive overview of the state-of-the-art advancements and applications of PINNs across a broad spectrum of PDE problems. In particular, focus is given on the PINN architectures, data resampling methods for PINN, loss and activation functions, feature embedding methods and so on. What’s more, the potential future directions and the anticipated evolution of PINNs are also discussed. We aim to provide valuable insights into PINNs for PDE problems, with hope to encourage further exploration and research in this promising area.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信