你真的需要法学硕士学位吗?重新思考客户评论分析的语言模型

IF 13.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Xiao, Yunke Li, Shaoyujie Chen, Hayden Barker, Ryan Rad
{"title":"你真的需要法学硕士学位吗?重新思考客户评论分析的语言模型","authors":"Yang Xiao,&nbsp;Yunke Li,&nbsp;Shaoyujie Chen,&nbsp;Hayden Barker,&nbsp;Ryan Rad","doi":"10.1007/s10462-025-11308-5","DOIUrl":null,"url":null,"abstract":"<div><p>LLarge language models (LLMs) demonstrate strong natural language processing capabilities but come with significant computational costs, raising questions about their practical utility compared to small language models (SLMs). This study systematically compares SLMs (DistilBERT, ELECTRA) and LLMs (Flan-T5, Flan-UL2) on two customer review analysis tasks: sentiment polarity classification and product correlation analysis. Our results show that while LLMs outperform in sentiment classification, they do so at a much higher computational cost, whereas fine-tuned SLMs excel in domain-specific correlation analysis with greater efficiency. To balance accuracy and cost, we propose a context-enhanced hybrid (CE-Hybrid) model, which refines traditional hybrid methods by enriching LLM input with SLM-generated insights, reducing redundant computation while maintaining accuracy. Our findings quantify the trade-offs between model performance and resource efficiency, offering actionable insights for businesses to optimize AI deployment. These results have significant implications for real-world applications such as e-commerce, customer service automation, and business analytics.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 10","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11308-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Do you actually need an LLM? Rethinking language models for customer reviews analysis\",\"authors\":\"Yang Xiao,&nbsp;Yunke Li,&nbsp;Shaoyujie Chen,&nbsp;Hayden Barker,&nbsp;Ryan Rad\",\"doi\":\"10.1007/s10462-025-11308-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>LLarge language models (LLMs) demonstrate strong natural language processing capabilities but come with significant computational costs, raising questions about their practical utility compared to small language models (SLMs). This study systematically compares SLMs (DistilBERT, ELECTRA) and LLMs (Flan-T5, Flan-UL2) on two customer review analysis tasks: sentiment polarity classification and product correlation analysis. Our results show that while LLMs outperform in sentiment classification, they do so at a much higher computational cost, whereas fine-tuned SLMs excel in domain-specific correlation analysis with greater efficiency. To balance accuracy and cost, we propose a context-enhanced hybrid (CE-Hybrid) model, which refines traditional hybrid methods by enriching LLM input with SLM-generated insights, reducing redundant computation while maintaining accuracy. Our findings quantify the trade-offs between model performance and resource efficiency, offering actionable insights for businesses to optimize AI deployment. These results have significant implications for real-world applications such as e-commerce, customer service automation, and business analytics.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 10\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11308-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11308-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11308-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(llm)展示了强大的自然语言处理能力,但也带来了巨大的计算成本,与小型语言模型(slm)相比,它们的实际效用受到了质疑。本研究系统比较了slm (DistilBERT, ELECTRA)和llm (Flan-T5, Flan-UL2)在两项客户评论分析任务:情感极性分类和产品相关性分析上的差异。我们的研究结果表明,虽然llm在情感分类方面表现出色,但它们的计算成本要高得多,而微调的slm在特定领域的相关性分析方面表现出色,效率更高。为了平衡准确性和成本,我们提出了一种上下文增强混合(CE-Hybrid)模型,该模型通过使用slm生成的见解丰富LLM输入来改进传统的混合方法,在保持准确性的同时减少冗余计算。我们的研究结果量化了模型性能和资源效率之间的权衡,为企业优化人工智能部署提供了可操作的见解。这些结果对于电子商务、客户服务自动化和业务分析等实际应用程序具有重要的含义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Do you actually need an LLM? Rethinking language models for customer reviews analysis

LLarge language models (LLMs) demonstrate strong natural language processing capabilities but come with significant computational costs, raising questions about their practical utility compared to small language models (SLMs). This study systematically compares SLMs (DistilBERT, ELECTRA) and LLMs (Flan-T5, Flan-UL2) on two customer review analysis tasks: sentiment polarity classification and product correlation analysis. Our results show that while LLMs outperform in sentiment classification, they do so at a much higher computational cost, whereas fine-tuned SLMs excel in domain-specific correlation analysis with greater efficiency. To balance accuracy and cost, we propose a context-enhanced hybrid (CE-Hybrid) model, which refines traditional hybrid methods by enriching LLM input with SLM-generated insights, reducing redundant computation while maintaining accuracy. Our findings quantify the trade-offs between model performance and resource efficiency, offering actionable insights for businesses to optimize AI deployment. These results have significant implications for real-world applications such as e-commerce, customer service automation, and business analytics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信