{"title":"基于语言模型的前沿关系提取技术综述","authors":"Jose A. Diaz-Garcia, Julio Amador Diaz Lopez","doi":"10.1007/s10462-025-11280-0","DOIUrl":null,"url":null,"abstract":"<div><p>This comprehensive survey examines the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences from 2020 to 2023, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging Large Language Models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 9","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11280-0.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey on cutting-edge relation extraction techniques based on language models\",\"authors\":\"Jose A. Diaz-Garcia, Julio Amador Diaz Lopez\",\"doi\":\"10.1007/s10462-025-11280-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This comprehensive survey examines the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences from 2020 to 2023, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging Large Language Models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"58 9\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-025-11280-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-025-11280-0\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11280-0","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A survey on cutting-edge relation extraction techniques based on language models
This comprehensive survey examines the latest advancements in Relation Extraction (RE), a pivotal task in natural language processing essential for applications across biomedical, financial, and legal sectors. This study highlights the evolution and current state of RE techniques by analyzing 137 papers presented at the Association for Computational Linguistics (ACL) conferences from 2020 to 2023, focusing on models that leverage language models. Our findings underscore the dominance of BERT-based methods in achieving state-of-the-art results for RE while also noting the promising capabilities of emerging Large Language Models (LLMs) like T5, especially in few-shot relation extraction scenarios where they excel in identifying previously unseen relations.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.