{"title":"基于VGSOT-MTJ的全并行自旋更新可重构机p位单元","authors":"Wentao Huang;Kaili Zhang;Junlin Wang;Yu Liu;Bolin Zhang;Youguang Zhang;Weisheng Zhao;Lang Zeng;Deming Zhang","doi":"10.1109/LED.2025.3598983","DOIUrl":null,"url":null,"abstract":"The spin-based probabilistic bit (p-bit) built on magnetic tunnel junction (MTJ) provides a low power and low overhead solution for building high performance Ising machine (IM). In this work, we propose a novel p-bit device that integrates a voltage-controlled magnetic anisotropy (VCMA) MTJ biased by spin-orbit torque (SOT) voltage. The proposed p-bit achieves an energy consumption of approximately 33fJ/bit per operation. A synchronous Ising network utilizing this device demonstrates rapid convergence to near-ground-state solutions when solving a <inline-formula> <tex-math>${13}\\times {26}$ </tex-math></inline-formula>-vertex Max-Cut problem in simulation. Furthermore, a reconfigurable IM architecture, realized through the coupling of MTJ array, enables an all-spin Ising system capable of addressing various combinatorial optimization problems (COPs). The proposed IM system also exhibits functional reconfigurability among multiple invertible Boolean logic gates, achieving a peak accuracy of 95%. These results highlight the potential of the proposed p-bit as a promising building block for high-speed, low-power and universal Ising machines.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 10","pages":"1889-1892"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel P-bit Unit Based on VGSOT-MTJ for Reconfigurable Ising Machine With Fully Parallel Spin Updating Design\",\"authors\":\"Wentao Huang;Kaili Zhang;Junlin Wang;Yu Liu;Bolin Zhang;Youguang Zhang;Weisheng Zhao;Lang Zeng;Deming Zhang\",\"doi\":\"10.1109/LED.2025.3598983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The spin-based probabilistic bit (p-bit) built on magnetic tunnel junction (MTJ) provides a low power and low overhead solution for building high performance Ising machine (IM). In this work, we propose a novel p-bit device that integrates a voltage-controlled magnetic anisotropy (VCMA) MTJ biased by spin-orbit torque (SOT) voltage. The proposed p-bit achieves an energy consumption of approximately 33fJ/bit per operation. A synchronous Ising network utilizing this device demonstrates rapid convergence to near-ground-state solutions when solving a <inline-formula> <tex-math>${13}\\\\times {26}$ </tex-math></inline-formula>-vertex Max-Cut problem in simulation. Furthermore, a reconfigurable IM architecture, realized through the coupling of MTJ array, enables an all-spin Ising system capable of addressing various combinatorial optimization problems (COPs). The proposed IM system also exhibits functional reconfigurability among multiple invertible Boolean logic gates, achieving a peak accuracy of 95%. These results highlight the potential of the proposed p-bit as a promising building block for high-speed, low-power and universal Ising machines.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 10\",\"pages\":\"1889-1892\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11124911/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11124911/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel P-bit Unit Based on VGSOT-MTJ for Reconfigurable Ising Machine With Fully Parallel Spin Updating Design
The spin-based probabilistic bit (p-bit) built on magnetic tunnel junction (MTJ) provides a low power and low overhead solution for building high performance Ising machine (IM). In this work, we propose a novel p-bit device that integrates a voltage-controlled magnetic anisotropy (VCMA) MTJ biased by spin-orbit torque (SOT) voltage. The proposed p-bit achieves an energy consumption of approximately 33fJ/bit per operation. A synchronous Ising network utilizing this device demonstrates rapid convergence to near-ground-state solutions when solving a ${13}\times {26}$ -vertex Max-Cut problem in simulation. Furthermore, a reconfigurable IM architecture, realized through the coupling of MTJ array, enables an all-spin Ising system capable of addressing various combinatorial optimization problems (COPs). The proposed IM system also exhibits functional reconfigurability among multiple invertible Boolean logic gates, achieving a peak accuracy of 95%. These results highlight the potential of the proposed p-bit as a promising building block for high-speed, low-power and universal Ising machines.
期刊介绍:
IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.