用于时空相关油藏计算的晶体管结构人工树突

IF 4.5 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yao Ni;Yumo Zhang;Jingjie Lin;Xingji Liu;Yue Yu;Lu Liu;Wei Zhong;Yayi Chen;Rongsheng Chen;Hoi Sing Kwok;Yuan Liu
{"title":"用于时空相关油藏计算的晶体管结构人工树突","authors":"Yao Ni;Yumo Zhang;Jingjie Lin;Xingji Liu;Yue Yu;Lu Liu;Wei Zhong;Yayi Chen;Rongsheng Chen;Hoi Sing Kwok;Yuan Liu","doi":"10.1109/LED.2025.3598823","DOIUrl":null,"url":null,"abstract":"Neuromorphic electronics, which integrate sensing, storage, and computing to boost efficiency and performance, offer a low-cost, energy-efficient alternative for temporal data processing with edge computing potential when applied to reservoir computing (RC). However, current neuromorphic RC systems struggle with diverse spatial information inputs due to device design limits. Here, we present the first artificial dendrite horizontally cascaded by Ga-Sn-O (GTO)-based synaptic transistors with efficient electron-ion coupled films as the gate dielectric. This design allows unlimited lateral gate expansion, source/drain and gate interchangeability, and sustains a microampere-level output current across a record centimeter-scale gate-channel distance. The artificial dendrite maintains stable weight modulation through <inline-formula> <tex-math>$10^{\\mathbf {{5}}}$ </tex-math></inline-formula> electrical cycles and <inline-formula> <tex-math>$10^{\\mathbf {{7}}}$ </tex-math></inline-formula> bending cycles, with performance restorable via dielectric film replacement. This work pioneers the demonstration of spatiotemporally correlated reservoir computing using artificial dendrites-based RC systems, achieving highly accurate recognition and introducing a new paradigm to the field.","PeriodicalId":13198,"journal":{"name":"IEEE Electron Device Letters","volume":"46 10","pages":"1881-1884"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transistor-Structured Artificial Dendrites for Spatiotemporally Correlated Reservoir Computing\",\"authors\":\"Yao Ni;Yumo Zhang;Jingjie Lin;Xingji Liu;Yue Yu;Lu Liu;Wei Zhong;Yayi Chen;Rongsheng Chen;Hoi Sing Kwok;Yuan Liu\",\"doi\":\"10.1109/LED.2025.3598823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuromorphic electronics, which integrate sensing, storage, and computing to boost efficiency and performance, offer a low-cost, energy-efficient alternative for temporal data processing with edge computing potential when applied to reservoir computing (RC). However, current neuromorphic RC systems struggle with diverse spatial information inputs due to device design limits. Here, we present the first artificial dendrite horizontally cascaded by Ga-Sn-O (GTO)-based synaptic transistors with efficient electron-ion coupled films as the gate dielectric. This design allows unlimited lateral gate expansion, source/drain and gate interchangeability, and sustains a microampere-level output current across a record centimeter-scale gate-channel distance. The artificial dendrite maintains stable weight modulation through <inline-formula> <tex-math>$10^{\\\\mathbf {{5}}}$ </tex-math></inline-formula> electrical cycles and <inline-formula> <tex-math>$10^{\\\\mathbf {{7}}}$ </tex-math></inline-formula> bending cycles, with performance restorable via dielectric film replacement. This work pioneers the demonstration of spatiotemporally correlated reservoir computing using artificial dendrites-based RC systems, achieving highly accurate recognition and introducing a new paradigm to the field.\",\"PeriodicalId\":13198,\"journal\":{\"name\":\"IEEE Electron Device Letters\",\"volume\":\"46 10\",\"pages\":\"1881-1884\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Electron Device Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11124894/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Electron Device Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11124894/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

神经形态电子学集成了传感、存储和计算,以提高效率和性能,为具有边缘计算潜力的时间数据处理提供了一种低成本、节能的替代方案,可用于油藏计算(RC)。然而,由于设备设计的限制,目前的神经形态RC系统难以处理不同的空间信息输入。在这里,我们提出了第一个人工枝晶水平级联的基于Ga-Sn-O (GTO)的突触晶体管,有效的电子-离子耦合薄膜作为栅介电介质。这种设计允许无限制的横向栅极扩展,源/漏极和栅极互换性,并在创纪录的厘米级栅极通道距离上维持微安级输出电流。人工枝晶通过$10^{\mathbf{{5}}}$电周期和$10^{\mathbf{{7}}}$弯曲周期保持稳定的重量调制,通过更换介电膜可恢复性能。这项工作开创了使用基于人工树突的RC系统进行时空相关油藏计算的先河,实现了高度精确的识别,并为该领域引入了一种新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transistor-Structured Artificial Dendrites for Spatiotemporally Correlated Reservoir Computing
Neuromorphic electronics, which integrate sensing, storage, and computing to boost efficiency and performance, offer a low-cost, energy-efficient alternative for temporal data processing with edge computing potential when applied to reservoir computing (RC). However, current neuromorphic RC systems struggle with diverse spatial information inputs due to device design limits. Here, we present the first artificial dendrite horizontally cascaded by Ga-Sn-O (GTO)-based synaptic transistors with efficient electron-ion coupled films as the gate dielectric. This design allows unlimited lateral gate expansion, source/drain and gate interchangeability, and sustains a microampere-level output current across a record centimeter-scale gate-channel distance. The artificial dendrite maintains stable weight modulation through $10^{\mathbf {{5}}}$ electrical cycles and $10^{\mathbf {{7}}}$ bending cycles, with performance restorable via dielectric film replacement. This work pioneers the demonstration of spatiotemporally correlated reservoir computing using artificial dendrites-based RC systems, achieving highly accurate recognition and introducing a new paradigm to the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Electron Device Letters
IEEE Electron Device Letters 工程技术-工程:电子与电气
CiteScore
8.20
自引率
10.20%
发文量
551
审稿时长
1.4 months
期刊介绍: IEEE Electron Device Letters publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信