用于AI加速器的5nm高效高密度数字SRAM内存计算宏

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Seok-Ju Yun;Jaehyuk Lee;Sungmeen Myung;Jangho An;Daekun Yoon;Seungchul Jung;Soonwan Kwon;Sangjoon Kim
{"title":"用于AI加速器的5nm高效高密度数字SRAM内存计算宏","authors":"Seok-Ju Yun;Jaehyuk Lee;Sungmeen Myung;Jangho An;Daekun Yoon;Seungchul Jung;Soonwan Kwon;Sangjoon Kim","doi":"10.1109/LSSC.2025.3532788","DOIUrl":null,"url":null,"abstract":"Two specialized digital SRAM In-memory computing (IMC) macros were implemented using a 5-nm process: 1) a high efficiency (HE) macro and 2) a high-density (HD) macro. The HE macro achieves an energy efficiency of 274 TOPS/W under 90% input bit sparsity, 50% weight bit sparsity, and 0.46-V supply voltage, by adopting a compact Wallace tree adder (WTA) and a tristate buffer optimized for pipelined operation. The HD macro achieves a state-of-the-art memory density performance of 5.67 Mb/mm2 by employing a multiply-cell consisting of a single transistor. Extensive sample measurements have confirmed the robust and reliable performance of the two digital IMC macros. The proposed HE and HD macros have demonstrated their significant potential as key building blocks for next-generation Artificial intelligence (AI) accelerators.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"269-272"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"5-nm High-Efficiency and High-Density Digital SRAM In-Memory-Computing Macros for AI Accelerators\",\"authors\":\"Seok-Ju Yun;Jaehyuk Lee;Sungmeen Myung;Jangho An;Daekun Yoon;Seungchul Jung;Soonwan Kwon;Sangjoon Kim\",\"doi\":\"10.1109/LSSC.2025.3532788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two specialized digital SRAM In-memory computing (IMC) macros were implemented using a 5-nm process: 1) a high efficiency (HE) macro and 2) a high-density (HD) macro. The HE macro achieves an energy efficiency of 274 TOPS/W under 90% input bit sparsity, 50% weight bit sparsity, and 0.46-V supply voltage, by adopting a compact Wallace tree adder (WTA) and a tristate buffer optimized for pipelined operation. The HD macro achieves a state-of-the-art memory density performance of 5.67 Mb/mm2 by employing a multiply-cell consisting of a single transistor. Extensive sample measurements have confirmed the robust and reliable performance of the two digital IMC macros. The proposed HE and HD macros have demonstrated their significant potential as key building blocks for next-generation Artificial intelligence (AI) accelerators.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"269-272\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10849601/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10849601/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

两个专门的数字SRAM内存计算(IMC)宏使用5nm工艺实现:1)高效率(HE)宏和2)高密度(HD)宏。HE宏通过采用紧凑的Wallace树状加法器(WTA)和针对管道操作优化的三态缓冲器,在90%的输入比特稀疏度、50%的权重比特稀疏度和0.46 v电源电压下实现了274 TOPS/W的能量效率。HD宏通过采用由单个晶体管组成的多单元,实现了5.67 Mb/mm2的最先进内存密度性能。大量的样品测量证实了这两个数字IMC宏的鲁棒性和可靠性。作为下一代人工智能(AI)加速器的关键构建模块,提议的HE和HD宏已经展示了它们的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
5-nm High-Efficiency and High-Density Digital SRAM In-Memory-Computing Macros for AI Accelerators
Two specialized digital SRAM In-memory computing (IMC) macros were implemented using a 5-nm process: 1) a high efficiency (HE) macro and 2) a high-density (HD) macro. The HE macro achieves an energy efficiency of 274 TOPS/W under 90% input bit sparsity, 50% weight bit sparsity, and 0.46-V supply voltage, by adopting a compact Wallace tree adder (WTA) and a tristate buffer optimized for pipelined operation. The HD macro achieves a state-of-the-art memory density performance of 5.67 Mb/mm2 by employing a multiply-cell consisting of a single transistor. Extensive sample measurements have confirmed the robust and reliable performance of the two digital IMC macros. The proposed HE and HD macros have demonstrated their significant potential as key building blocks for next-generation Artificial intelligence (AI) accelerators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信