串联三阱型低寄生MOS电容器的设计与验证

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Zhendong Li;Yongjuan Shi;Yifan Jiang;Chen Hu;Junting Chen;Mengyuan Hua;Xun Liu;Junmin Jiang
{"title":"串联三阱型低寄生MOS电容器的设计与验证","authors":"Zhendong Li;Yongjuan Shi;Yifan Jiang;Chen Hu;Junting Chen;Mengyuan Hua;Xun Liu;Junmin Jiang","doi":"10.1109/LSSC.2025.3608282","DOIUrl":null,"url":null,"abstract":"This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"277-280"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Verification of Low Parasitic MOS Capacitors With Series Connected Tri-Well Junctions\",\"authors\":\"Zhendong Li;Yongjuan Shi;Yifan Jiang;Chen Hu;Junting Chen;Mengyuan Hua;Xun Liu;Junmin Jiang\",\"doi\":\"10.1109/LSSC.2025.3608282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"277-280\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11157720/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11157720/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

这封信提出了一种三孔实现的MOS电容器,旨在解决高寄生电容的挑战。通过在三个孔(n孔、深p孔和深n孔)和衬底(PSUB)之间串联三个寄生孔结电容器,可以显著降低寄生电容。使用足够大的电阻施加更高的偏置电压以进一步减小寄生电容。此外,我们还提出了一种使用片外逆变器测试极小寄生电容的简单有效方法。测试芯片采用180nm BCD工艺制备。测量结果表明,通过有效偏置串联的三孔结,1.8 v MOS电容的寄生/飞行电容比可降至0.67%,而与双孔结相比,芯片面积开销仅增加7.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and Verification of Low Parasitic MOS Capacitors With Series Connected Tri-Well Junctions
This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信