{"title":"串联三阱型低寄生MOS电容器的设计与验证","authors":"Zhendong Li;Yongjuan Shi;Yifan Jiang;Chen Hu;Junting Chen;Mengyuan Hua;Xun Liu;Junmin Jiang","doi":"10.1109/LSSC.2025.3608282","DOIUrl":null,"url":null,"abstract":"This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"277-280"},"PeriodicalIF":2.0000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and Verification of Low Parasitic MOS Capacitors With Series Connected Tri-Well Junctions\",\"authors\":\"Zhendong Li;Yongjuan Shi;Yifan Jiang;Chen Hu;Junting Chen;Mengyuan Hua;Xun Liu;Junmin Jiang\",\"doi\":\"10.1109/LSSC.2025.3608282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"277-280\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11157720/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11157720/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
这封信提出了一种三孔实现的MOS电容器,旨在解决高寄生电容的挑战。通过在三个孔(n孔、深p孔和深n孔)和衬底(PSUB)之间串联三个寄生孔结电容器,可以显著降低寄生电容。使用足够大的电阻施加更高的偏置电压以进一步减小寄生电容。此外,我们还提出了一种使用片外逆变器测试极小寄生电容的简单有效方法。测试芯片采用180nm BCD工艺制备。测量结果表明,通过有效偏置串联的三孔结,1.8 v MOS电容的寄生/飞行电容比可降至0.67%,而与双孔结相比,芯片面积开销仅增加7.7%。
Design and Verification of Low Parasitic MOS Capacitors With Series Connected Tri-Well Junctions
This letter presents a tri-well implementation of MOS capacitors designed to tackle the challenge of high parasitic capacitance. By serially connecting the three parasitic well junction capacitors between the three wells (N-Well, deep P-Well, and deep N-Well) and substrate (PSUB), the parasitic capacitance can be significantly decreased. A higher bias voltage is applied using a sufficiently large resistor to further reduce parasitic capacitance. Furthermore, we also present a simple and effective method for testing very small parasitic capacitance using off-chip inverters. The test chip was fabricated using the 180-nm BCD process. The measurement results indicate that the ratio of parasitic to flying capacitance can be reduced to as low as 0.67% for 1.8-V MOS capacitors through series-connected tri-well junctions with effective biasing while only increasing a 7.7% the chip area overhead compared to the dual-well junctions.