伪电容驱动的双金属MOF协同和DNA扩增的超灵敏生物传感。

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Chenchen Jin, , , Yu Ya, , , Qingnian Wu, , , Kaili Wang, , , Tao Wen, , , Defen Feng, , , Ke-Jing Huang*, , , Xuecai Tan*, , and , Jing Xu*, 
{"title":"伪电容驱动的双金属MOF协同和DNA扩增的超灵敏生物传感。","authors":"Chenchen Jin,&nbsp;, ,&nbsp;Yu Ya,&nbsp;, ,&nbsp;Qingnian Wu,&nbsp;, ,&nbsp;Kaili Wang,&nbsp;, ,&nbsp;Tao Wen,&nbsp;, ,&nbsp;Defen Feng,&nbsp;, ,&nbsp;Ke-Jing Huang*,&nbsp;, ,&nbsp;Xuecai Tan*,&nbsp;, and ,&nbsp;Jing Xu*,&nbsp;","doi":"10.1021/acs.analchem.5c04562","DOIUrl":null,"url":null,"abstract":"<p >Ultrasensitive detection of plant pathogen DNA is crucial for early disease intervention but remains challenging due to limitations in sensitivity, specificity, and field-deployable power requirements of current methods. To address this, an innovative pseudocapacitance-driven biosensing platform is presented for the synergistic integration of bimetallic MOF synergy with cascade DNA amplification. A hierarchically porous bimetallic MOF (NiMn-MOF), engineered to leverage the synergistic interplay of dual redox-active metal centers, achieves an ultrahigh intrinsic areal capacitance (1820 μF/cm<sup>2</sup>) through synergistic intercalation pseudocapacitance. This eliminates the need for external capacitors while enabling dual-pathway signal amplification via efficient cation-insertion charge storage. Coupled with a cascaded strand displacement reaction-catalytic hairpin assembly (SDR-CHA) DNA circuit providing 10<sup>6</sup>-fold nucleic acid amplification, target DNA triggers DNA nanostructure reconfiguration that modulates the binding of the electroactive probe (methylene blue) to the MOF cathode. This fusion of advanced energy storage materials and nucleic acid nanotechnology establishes a self-sustaining signal transduction cascade, achieving unprecedented analytical performance: a detection limit of 0.39 fmol/L, a linear range spanning 6 orders of magnitude (5 × 10<sup>–16</sup>–10<sup>–9</sup> mol/L), and exceptional single-base specificity. Validation in complex sugar cane juice matrices demonstrated high reliability (90–101% recovery) and robust operation against interferents. This work pioneers converging bimetallic MOF pseudocapacitance with enzymatic nucleic acid circuits, establishing a powerful paradigm for pseudocapacitance-driven biosensing with transformative potential for ultrasensitive, onsite molecular diagnostics.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"97 39","pages":"21707–21720"},"PeriodicalIF":6.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pseudocapacitance-Driven Ultrasensitive Biosensing via Bimetallic MOF Synergy and DNA Amplification\",\"authors\":\"Chenchen Jin,&nbsp;, ,&nbsp;Yu Ya,&nbsp;, ,&nbsp;Qingnian Wu,&nbsp;, ,&nbsp;Kaili Wang,&nbsp;, ,&nbsp;Tao Wen,&nbsp;, ,&nbsp;Defen Feng,&nbsp;, ,&nbsp;Ke-Jing Huang*,&nbsp;, ,&nbsp;Xuecai Tan*,&nbsp;, and ,&nbsp;Jing Xu*,&nbsp;\",\"doi\":\"10.1021/acs.analchem.5c04562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ultrasensitive detection of plant pathogen DNA is crucial for early disease intervention but remains challenging due to limitations in sensitivity, specificity, and field-deployable power requirements of current methods. To address this, an innovative pseudocapacitance-driven biosensing platform is presented for the synergistic integration of bimetallic MOF synergy with cascade DNA amplification. A hierarchically porous bimetallic MOF (NiMn-MOF), engineered to leverage the synergistic interplay of dual redox-active metal centers, achieves an ultrahigh intrinsic areal capacitance (1820 μF/cm<sup>2</sup>) through synergistic intercalation pseudocapacitance. This eliminates the need for external capacitors while enabling dual-pathway signal amplification via efficient cation-insertion charge storage. Coupled with a cascaded strand displacement reaction-catalytic hairpin assembly (SDR-CHA) DNA circuit providing 10<sup>6</sup>-fold nucleic acid amplification, target DNA triggers DNA nanostructure reconfiguration that modulates the binding of the electroactive probe (methylene blue) to the MOF cathode. This fusion of advanced energy storage materials and nucleic acid nanotechnology establishes a self-sustaining signal transduction cascade, achieving unprecedented analytical performance: a detection limit of 0.39 fmol/L, a linear range spanning 6 orders of magnitude (5 × 10<sup>–16</sup>–10<sup>–9</sup> mol/L), and exceptional single-base specificity. Validation in complex sugar cane juice matrices demonstrated high reliability (90–101% recovery) and robust operation against interferents. This work pioneers converging bimetallic MOF pseudocapacitance with enzymatic nucleic acid circuits, establishing a powerful paradigm for pseudocapacitance-driven biosensing with transformative potential for ultrasensitive, onsite molecular diagnostics.</p>\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"97 39\",\"pages\":\"21707–21720\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.analchem.5c04562\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.analchem.5c04562","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

植物病原体DNA的超灵敏检测对于早期疾病干预至关重要,但由于当前方法在灵敏度、特异性和现场可部署功率要求方面的限制,仍然具有挑战性。为了解决这个问题,提出了一种创新的伪电容驱动的生物传感平台,用于双金属MOF协同作用与级联DNA扩增的协同集成。一种分层多孔双金属MOF (NiMn-MOF),利用双氧化还原活性金属中心的协同相互作用,通过协同嵌入伪电容实现超高的本质面电容(1820 μF/cm2)。这消除了对外部电容器的需求,同时通过有效的阳离子插入电荷存储实现双路信号放大。结合级联链位移反应-催化发夹组装(SDR-CHA) DNA电路,提供106倍核酸扩增,目标DNA触发DNA纳米结构重构,调节电活性探针(亚甲基蓝)与MOF阴极的结合。这种先进的能量存储材料和核酸纳米技术的融合建立了一个自我维持的信号转导级联,实现了前所未有的分析性能:检测限为0.39 fmol/L,线性范围跨越6个数量级(5 × 10-16-10-9 mol/L),以及出色的单碱基特异性。在复杂的甘蔗汁基质中验证具有高可靠性(回收率为90-101%)和对干扰物的稳健操作。这项工作开创了双金属MOF伪电容与酶核酸电路的融合,为伪电容驱动的生物传感建立了一个强大的范例,具有超灵敏现场分子诊断的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pseudocapacitance-Driven Ultrasensitive Biosensing via Bimetallic MOF Synergy and DNA Amplification

Pseudocapacitance-Driven Ultrasensitive Biosensing via Bimetallic MOF Synergy and DNA Amplification

Ultrasensitive detection of plant pathogen DNA is crucial for early disease intervention but remains challenging due to limitations in sensitivity, specificity, and field-deployable power requirements of current methods. To address this, an innovative pseudocapacitance-driven biosensing platform is presented for the synergistic integration of bimetallic MOF synergy with cascade DNA amplification. A hierarchically porous bimetallic MOF (NiMn-MOF), engineered to leverage the synergistic interplay of dual redox-active metal centers, achieves an ultrahigh intrinsic areal capacitance (1820 μF/cm2) through synergistic intercalation pseudocapacitance. This eliminates the need for external capacitors while enabling dual-pathway signal amplification via efficient cation-insertion charge storage. Coupled with a cascaded strand displacement reaction-catalytic hairpin assembly (SDR-CHA) DNA circuit providing 106-fold nucleic acid amplification, target DNA triggers DNA nanostructure reconfiguration that modulates the binding of the electroactive probe (methylene blue) to the MOF cathode. This fusion of advanced energy storage materials and nucleic acid nanotechnology establishes a self-sustaining signal transduction cascade, achieving unprecedented analytical performance: a detection limit of 0.39 fmol/L, a linear range spanning 6 orders of magnitude (5 × 10–16–10–9 mol/L), and exceptional single-base specificity. Validation in complex sugar cane juice matrices demonstrated high reliability (90–101% recovery) and robust operation against interferents. This work pioneers converging bimetallic MOF pseudocapacitance with enzymatic nucleic acid circuits, establishing a powerful paradigm for pseudocapacitance-driven biosensing with transformative potential for ultrasensitive, onsite molecular diagnostics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信