{"title":"pH值变化引起的多脂耶氏菌生物膜代谢变化。","authors":"Akarawit Jenjitwanich, Hans Marx, Michael Sauer","doi":"10.1093/femsle/fnaf101","DOIUrl":null,"url":null,"abstract":"<p><p>The yeast Yarrowia lipolytica adapts its metabolite production based on cultivation conditions, with the pH value playing a critical role. At pH 3, most Y. lipolytica strains produce polyols, while at pH 5, they accumulate predominantly organic acids. Yarrowia lipolytica has demonstrated the ability to transition from a planktonic, free-floating state to an immobilized state as a biofilm. This study aims to clarify the effects of pH level and carbon sources on the physiological state of Y. lipolytica when grown in a biofilm state. These pH variations were applied to the same biofilm culture to assess the capacity of given Y. lipolytica cells to undergo metabolic shifts and recovery under changing environmental conditions. Interestingly, a pH shift from 3 to 5 leads-as expected-to a metabolic shift from polyols to citric acid. However, the shift back to pH 3 does not revert to polyols as major products. This study not only revealed an unexpected production pattern but also provided benefits for the industrial process in general. Understanding biofilm cultivation methods supports continuous bioprocesses using the immobilized nature of biofilm. pH-alternating experiments reveal how environmental condition fluctuations affect biofilm culture physiology.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501417/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metabolic shifts induced by pH variation in Yarrowia lipolytica biofilm.\",\"authors\":\"Akarawit Jenjitwanich, Hans Marx, Michael Sauer\",\"doi\":\"10.1093/femsle/fnaf101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The yeast Yarrowia lipolytica adapts its metabolite production based on cultivation conditions, with the pH value playing a critical role. At pH 3, most Y. lipolytica strains produce polyols, while at pH 5, they accumulate predominantly organic acids. Yarrowia lipolytica has demonstrated the ability to transition from a planktonic, free-floating state to an immobilized state as a biofilm. This study aims to clarify the effects of pH level and carbon sources on the physiological state of Y. lipolytica when grown in a biofilm state. These pH variations were applied to the same biofilm culture to assess the capacity of given Y. lipolytica cells to undergo metabolic shifts and recovery under changing environmental conditions. Interestingly, a pH shift from 3 to 5 leads-as expected-to a metabolic shift from polyols to citric acid. However, the shift back to pH 3 does not revert to polyols as major products. This study not only revealed an unexpected production pattern but also provided benefits for the industrial process in general. Understanding biofilm cultivation methods supports continuous bioprocesses using the immobilized nature of biofilm. pH-alternating experiments reveal how environmental condition fluctuations affect biofilm culture physiology.</p>\",\"PeriodicalId\":12214,\"journal\":{\"name\":\"Fems Microbiology Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12501417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fems Microbiology Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsle/fnaf101\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnaf101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Metabolic shifts induced by pH variation in Yarrowia lipolytica biofilm.
The yeast Yarrowia lipolytica adapts its metabolite production based on cultivation conditions, with the pH value playing a critical role. At pH 3, most Y. lipolytica strains produce polyols, while at pH 5, they accumulate predominantly organic acids. Yarrowia lipolytica has demonstrated the ability to transition from a planktonic, free-floating state to an immobilized state as a biofilm. This study aims to clarify the effects of pH level and carbon sources on the physiological state of Y. lipolytica when grown in a biofilm state. These pH variations were applied to the same biofilm culture to assess the capacity of given Y. lipolytica cells to undergo metabolic shifts and recovery under changing environmental conditions. Interestingly, a pH shift from 3 to 5 leads-as expected-to a metabolic shift from polyols to citric acid. However, the shift back to pH 3 does not revert to polyols as major products. This study not only revealed an unexpected production pattern but also provided benefits for the industrial process in general. Understanding biofilm cultivation methods supports continuous bioprocesses using the immobilized nature of biofilm. pH-alternating experiments reveal how environmental condition fluctuations affect biofilm culture physiology.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.