{"title":"药物治疗中的药物基因组学:管理高风险药物反应的全球监管指南。","authors":"Safa Omran, Siew Hua Gan, Siew Li Teoh","doi":"10.1038/s41431-025-01950-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacogenomics is rapidly transforming precision medicine, yet regulatory policies governing its implementation vary widely across countries. This review aims to provide a global perspective on pharmacogenomics guidelines, with a particular focus on high-risk drug reactions such as carbamazepine therapy-induced severe cutaneous adverse reactions. Carbamazepine was selected as a representative example due to its inclusion on the World Health Organization's essential medicines list and its well-documented association with high-risk alleles, which are linked to severe cutaneous adverse reactions such as Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis-conditions with significant mortality rates. Two databases, Overton and Dimensions, were searched to identify relevant national guidelines and policy documents in English. Countries were identified based on document availability and access to governmental sources. The review revealed that all examined countries recognized genetic variation in carbamazepine response within their guidelines, showing notable consistency. However, religious implications related to pharmacogenomics were largely absent. The findings also indicated a growing global momentum toward integrating pharmacogenomics into healthcare systems, although the depth and scope of regulation differ. The United States stands out for its comprehensive pharmacogenomics policy framework, which extends to clinical and industry settings. Lessons from the U.S. model can inform policy development in other regions, tailored to each country's healthcare infrastructure and cultural context. In conclusion, global harmonization of pharmacogenomics policies is essential to foster international collaboration, enable data sharing, and enhance the safe and equitable implementation of pharmacogenomics in clinical practice.</p>","PeriodicalId":12016,"journal":{"name":"European Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pharmacogenomics in drug therapy: global regulatory guidelines for managing high-risk drug reactions.\",\"authors\":\"Safa Omran, Siew Hua Gan, Siew Li Teoh\",\"doi\":\"10.1038/s41431-025-01950-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pharmacogenomics is rapidly transforming precision medicine, yet regulatory policies governing its implementation vary widely across countries. This review aims to provide a global perspective on pharmacogenomics guidelines, with a particular focus on high-risk drug reactions such as carbamazepine therapy-induced severe cutaneous adverse reactions. Carbamazepine was selected as a representative example due to its inclusion on the World Health Organization's essential medicines list and its well-documented association with high-risk alleles, which are linked to severe cutaneous adverse reactions such as Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis-conditions with significant mortality rates. Two databases, Overton and Dimensions, were searched to identify relevant national guidelines and policy documents in English. Countries were identified based on document availability and access to governmental sources. The review revealed that all examined countries recognized genetic variation in carbamazepine response within their guidelines, showing notable consistency. However, religious implications related to pharmacogenomics were largely absent. The findings also indicated a growing global momentum toward integrating pharmacogenomics into healthcare systems, although the depth and scope of regulation differ. The United States stands out for its comprehensive pharmacogenomics policy framework, which extends to clinical and industry settings. Lessons from the U.S. model can inform policy development in other regions, tailored to each country's healthcare infrastructure and cultural context. In conclusion, global harmonization of pharmacogenomics policies is essential to foster international collaboration, enable data sharing, and enhance the safe and equitable implementation of pharmacogenomics in clinical practice.</p>\",\"PeriodicalId\":12016,\"journal\":{\"name\":\"European Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41431-025-01950-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41431-025-01950-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Pharmacogenomics in drug therapy: global regulatory guidelines for managing high-risk drug reactions.
Pharmacogenomics is rapidly transforming precision medicine, yet regulatory policies governing its implementation vary widely across countries. This review aims to provide a global perspective on pharmacogenomics guidelines, with a particular focus on high-risk drug reactions such as carbamazepine therapy-induced severe cutaneous adverse reactions. Carbamazepine was selected as a representative example due to its inclusion on the World Health Organization's essential medicines list and its well-documented association with high-risk alleles, which are linked to severe cutaneous adverse reactions such as Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis-conditions with significant mortality rates. Two databases, Overton and Dimensions, were searched to identify relevant national guidelines and policy documents in English. Countries were identified based on document availability and access to governmental sources. The review revealed that all examined countries recognized genetic variation in carbamazepine response within their guidelines, showing notable consistency. However, religious implications related to pharmacogenomics were largely absent. The findings also indicated a growing global momentum toward integrating pharmacogenomics into healthcare systems, although the depth and scope of regulation differ. The United States stands out for its comprehensive pharmacogenomics policy framework, which extends to clinical and industry settings. Lessons from the U.S. model can inform policy development in other regions, tailored to each country's healthcare infrastructure and cultural context. In conclusion, global harmonization of pharmacogenomics policies is essential to foster international collaboration, enable data sharing, and enhance the safe and equitable implementation of pharmacogenomics in clinical practice.
期刊介绍:
The European Journal of Human Genetics is the official journal of the European Society of Human Genetics, publishing high-quality, original research papers, short reports and reviews in the rapidly expanding field of human genetics and genomics. It covers molecular, clinical and cytogenetics, interfacing between advanced biomedical research and the clinician, and bridging the great diversity of facilities, resources and viewpoints in the genetics community.
Key areas include:
-Monogenic and multifactorial disorders
-Development and malformation
-Hereditary cancer
-Medical Genomics
-Gene mapping and functional studies
-Genotype-phenotype correlations
-Genetic variation and genome diversity
-Statistical and computational genetics
-Bioinformatics
-Advances in diagnostics
-Therapy and prevention
-Animal models
-Genetic services
-Community genetics