福沙匹坦二聚氨胺减轻登革热病毒感染和病毒诱导的炎症反应。

IF 3.8 2区 医学 Q2 CHEMISTRY, MEDICINAL
Xueyi Deng, Ningze Zheng, Shurui Liu, Wenying Cao, Yi-Ping Li, Guigen Zhang
{"title":"福沙匹坦二聚氨胺减轻登革热病毒感染和病毒诱导的炎症反应。","authors":"Xueyi Deng, Ningze Zheng, Shurui Liu, Wenying Cao, Yi-Ping Li, Guigen Zhang","doi":"10.1021/acsinfecdis.5c00490","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue remains one of the most important mosquito-borne diseases. Currently, in the absence of targeted antiviral therapy, the treatment of dengue remains supportive. In this study, we found that the neurokinin-1 receptor antagonist fosaprepitant dimeglumine, an FDA-approved drug for the prevention of nausea and vomiting, efficiently inhibited dengue virus (DENV) infection <i>in vitro</i>. Fosaprepitant dimeglumine dose-dependently inhibited DENV replication in several cell lines, including A549 cells and THP-1-derived macrophages, with IC<sub>50</sub> values of 3.26 and 4.20 μM, respectively. The time-of-drug-addition and time-of-drug-elimination assays revealed that fosaprepitant dimeglumine acted at late stages after virus entry. Fosaprepitant dimeglumine efficiently inhibited DENV genome replication in a stable reporter DENV-3 replicon cell line. The immune-mediated cytokine storm is known to play a key role in the severe manifestation of dengue. The interferon γ-inducible protein 10 (IP-10) and IL-6 are upregulated in severe dengue. For the first time, we report that fosaprepitant dimeglumine significantly suppressed the levels of the proinflammatory cytokines IL-6 and IP-10 in differentiated THP-1 macrophages infected with DENV-2. Fosaprepitant dimeglumine not only effectively inhibits DENV replication but also attenuates virus-induced inflammatory responses, which makes it a promising candidate for drug repurposing in the treatment of severe dengue.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fosaprepitant Dimeglumine Alleviates Dengue Virus Infection and Virus-Induced Inflammatory Responses.\",\"authors\":\"Xueyi Deng, Ningze Zheng, Shurui Liu, Wenying Cao, Yi-Ping Li, Guigen Zhang\",\"doi\":\"10.1021/acsinfecdis.5c00490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dengue remains one of the most important mosquito-borne diseases. Currently, in the absence of targeted antiviral therapy, the treatment of dengue remains supportive. In this study, we found that the neurokinin-1 receptor antagonist fosaprepitant dimeglumine, an FDA-approved drug for the prevention of nausea and vomiting, efficiently inhibited dengue virus (DENV) infection <i>in vitro</i>. Fosaprepitant dimeglumine dose-dependently inhibited DENV replication in several cell lines, including A549 cells and THP-1-derived macrophages, with IC<sub>50</sub> values of 3.26 and 4.20 μM, respectively. The time-of-drug-addition and time-of-drug-elimination assays revealed that fosaprepitant dimeglumine acted at late stages after virus entry. Fosaprepitant dimeglumine efficiently inhibited DENV genome replication in a stable reporter DENV-3 replicon cell line. The immune-mediated cytokine storm is known to play a key role in the severe manifestation of dengue. The interferon γ-inducible protein 10 (IP-10) and IL-6 are upregulated in severe dengue. For the first time, we report that fosaprepitant dimeglumine significantly suppressed the levels of the proinflammatory cytokines IL-6 and IP-10 in differentiated THP-1 macrophages infected with DENV-2. Fosaprepitant dimeglumine not only effectively inhibits DENV replication but also attenuates virus-induced inflammatory responses, which makes it a promising candidate for drug repurposing in the treatment of severe dengue.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00490\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00490","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

登革热仍然是最重要的蚊媒疾病之一。目前,在缺乏靶向抗病毒治疗的情况下,登革热的治疗仍然是支持性的。在这项研究中,我们发现神经动素-1受体拮抗剂fosaprepitant dimeglumine,一种fda批准的用于预防恶心和呕吐的药物,在体外有效地抑制登革热病毒(DENV)感染。Fosaprepitant二聚氨胺对多种细胞系(包括A549细胞和thp -1来源的巨噬细胞)的DENV复制具有剂量依赖性,其IC50值分别为3.26和4.20 μM。药物添加时间和药物消除时间测定显示,福沙吡坦二聚氨苄在病毒进入后的后期才起作用。在稳定的DENV-3复制子报告细胞系中,Fosaprepitant二聚氨胺有效地抑制DENV基因组复制。已知免疫介导的细胞因子风暴在登革热的严重表现中起关键作用。干扰素γ诱导蛋白10 (IP-10)和IL-6在重症登革热中表达上调。我们首次报道了fosaprepitant二聚氨胺显著抑制DENV-2感染的分化THP-1巨噬细胞中促炎细胞因子IL-6和IP-10的水平。Fosaprepitant二聚氨胺不仅能有效抑制DENV复制,还能减轻病毒诱导的炎症反应,这使其成为治疗重症登革热的有希望的药物重新利用候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fosaprepitant Dimeglumine Alleviates Dengue Virus Infection and Virus-Induced Inflammatory Responses.

Dengue remains one of the most important mosquito-borne diseases. Currently, in the absence of targeted antiviral therapy, the treatment of dengue remains supportive. In this study, we found that the neurokinin-1 receptor antagonist fosaprepitant dimeglumine, an FDA-approved drug for the prevention of nausea and vomiting, efficiently inhibited dengue virus (DENV) infection in vitro. Fosaprepitant dimeglumine dose-dependently inhibited DENV replication in several cell lines, including A549 cells and THP-1-derived macrophages, with IC50 values of 3.26 and 4.20 μM, respectively. The time-of-drug-addition and time-of-drug-elimination assays revealed that fosaprepitant dimeglumine acted at late stages after virus entry. Fosaprepitant dimeglumine efficiently inhibited DENV genome replication in a stable reporter DENV-3 replicon cell line. The immune-mediated cytokine storm is known to play a key role in the severe manifestation of dengue. The interferon γ-inducible protein 10 (IP-10) and IL-6 are upregulated in severe dengue. For the first time, we report that fosaprepitant dimeglumine significantly suppressed the levels of the proinflammatory cytokines IL-6 and IP-10 in differentiated THP-1 macrophages infected with DENV-2. Fosaprepitant dimeglumine not only effectively inhibits DENV replication but also attenuates virus-induced inflammatory responses, which makes it a promising candidate for drug repurposing in the treatment of severe dengue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信