高温光通信中二维范德华异质结构的界面工程

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Fan Yang, Haizeng Song, Shunshun Yang, Yichun Cui, Shafqat Hussain, Xueqian Sun, Youwen Liu, Yi Shi and Linglong Zhang
{"title":"高温光通信中二维范德华异质结构的界面工程","authors":"Fan Yang, Haizeng Song, Shunshun Yang, Yichun Cui, Shafqat Hussain, Xueqian Sun, Youwen Liu, Yi Shi and Linglong Zhang","doi":"10.1039/D5TC02092A","DOIUrl":null,"url":null,"abstract":"<p >Two-dimensional (2D) semiconductor materials maintain high carrier mobility, exceptional physical properties, thermal stability, and highly tunable band structures, making them ideal for designing high-temperature field-effect transistors (FETs) and photodiodes. However, most atoms of these materials are located on the surface, making them susceptible to degradation due to oxidation and decomposition at high temperatures. Here, we employed hexagonal boron nitride (hBN) to encapsulate molybdenum disulfide (MoS<small><sub>2</sub></small>), resulting in enhanced operation stability at temperatures above 523 K. Temperature-dependent photoluminescence (PL) measurements reveal that hBN encapsulation increases the activation energy (<em>E</em><small><sub>a</sub></small> ∼ 67 meV), indicating superior thermal stability. Additionally, the hBN-encapsulated tungsten diselenide (WSe<small><sub>2</sub></small>)–MoS<small><sub>2</sub></small> p–n junction exhibits a thermally stable ideality factor of ∼1.149 at 558 K. By leveraging the stable photoresponse at high temperatures, we further successfully realized a light communication system with enhanced security and reliability. These findings can pave the way for the development of 2D FETs and photodiodes in extreme environments.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 37","pages":" 19308-19315"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface engineering of 2D van der Waals heterostructures for high-temperature optical communication\",\"authors\":\"Fan Yang, Haizeng Song, Shunshun Yang, Yichun Cui, Shafqat Hussain, Xueqian Sun, Youwen Liu, Yi Shi and Linglong Zhang\",\"doi\":\"10.1039/D5TC02092A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Two-dimensional (2D) semiconductor materials maintain high carrier mobility, exceptional physical properties, thermal stability, and highly tunable band structures, making them ideal for designing high-temperature field-effect transistors (FETs) and photodiodes. However, most atoms of these materials are located on the surface, making them susceptible to degradation due to oxidation and decomposition at high temperatures. Here, we employed hexagonal boron nitride (hBN) to encapsulate molybdenum disulfide (MoS<small><sub>2</sub></small>), resulting in enhanced operation stability at temperatures above 523 K. Temperature-dependent photoluminescence (PL) measurements reveal that hBN encapsulation increases the activation energy (<em>E</em><small><sub>a</sub></small> ∼ 67 meV), indicating superior thermal stability. Additionally, the hBN-encapsulated tungsten diselenide (WSe<small><sub>2</sub></small>)–MoS<small><sub>2</sub></small> p–n junction exhibits a thermally stable ideality factor of ∼1.149 at 558 K. By leveraging the stable photoresponse at high temperatures, we further successfully realized a light communication system with enhanced security and reliability. These findings can pave the way for the development of 2D FETs and photodiodes in extreme environments.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 37\",\"pages\":\" 19308-19315\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02092a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc02092a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)半导体材料保持高载流子迁移率,卓越的物理性能,热稳定性和高度可调谐的带结构,使其成为设计高温场效应晶体管(fet)和光电二极管的理想选择。然而,这些材料的大多数原子都位于表面,这使得它们在高温下容易因氧化和分解而降解。在这里,我们使用六方氮化硼(hBN)封装二硫化钼(MoS2),从而提高了在523 K以上温度下的操作稳定性。温度依赖性光致发光(PL)测量表明,hBN包封增加了活化能(Ea ~ 67 meV),表明优越的热稳定性。此外,hbn封装的二硒化钨(WSe2) -MoS2 p-n结在558 K时表现出约1.149的热稳定理想因子。利用高温下稳定的光响应,我们进一步成功实现了具有增强安全性和可靠性的光通信系统。这些发现可以为在极端环境下开发二维场效应管和光电二极管铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Interface engineering of 2D van der Waals heterostructures for high-temperature optical communication

Interface engineering of 2D van der Waals heterostructures for high-temperature optical communication

Two-dimensional (2D) semiconductor materials maintain high carrier mobility, exceptional physical properties, thermal stability, and highly tunable band structures, making them ideal for designing high-temperature field-effect transistors (FETs) and photodiodes. However, most atoms of these materials are located on the surface, making them susceptible to degradation due to oxidation and decomposition at high temperatures. Here, we employed hexagonal boron nitride (hBN) to encapsulate molybdenum disulfide (MoS2), resulting in enhanced operation stability at temperatures above 523 K. Temperature-dependent photoluminescence (PL) measurements reveal that hBN encapsulation increases the activation energy (Ea ∼ 67 meV), indicating superior thermal stability. Additionally, the hBN-encapsulated tungsten diselenide (WSe2)–MoS2 p–n junction exhibits a thermally stable ideality factor of ∼1.149 at 558 K. By leveraging the stable photoresponse at high temperatures, we further successfully realized a light communication system with enhanced security and reliability. These findings can pave the way for the development of 2D FETs and photodiodes in extreme environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信