{"title":"地球气候地质规律的不稳定性","authors":"Dominik Hülse, Andy Ridgwell","doi":"10.1126/science.adh7730","DOIUrl":null,"url":null,"abstract":"<div >Negative feedback between climate and atmospheric carbon dioxide (CO<sub>2</sub>), mediated by the weathering of silicate minerals on land, is thought to provide the primary regulation of Earth’s climate on geological timescales. By contrast, we found that faster feedbacks involving organic matter are not only critical to Earth system recovery but can also create unexpected instability. Our Earth system model experiments show how sedimentary organic carbon burial, amplified by redox-sensitive phosphorus regeneration, can outweigh silicate weathering and paradoxically drive climate overcooling in response to massive CO<sub>2</sub> release. This instability depends on the initial balance between silicate weathering and organic carbon burial in addition to the state of global phosphorus cycling. It is most strongly expressed at intermediate ocean redox states, which may help us understand the timing of past ice ages.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6767","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability in the geological regulation of Earth’s climate\",\"authors\":\"Dominik Hülse, Andy Ridgwell\",\"doi\":\"10.1126/science.adh7730\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Negative feedback between climate and atmospheric carbon dioxide (CO<sub>2</sub>), mediated by the weathering of silicate minerals on land, is thought to provide the primary regulation of Earth’s climate on geological timescales. By contrast, we found that faster feedbacks involving organic matter are not only critical to Earth system recovery but can also create unexpected instability. Our Earth system model experiments show how sedimentary organic carbon burial, amplified by redox-sensitive phosphorus regeneration, can outweigh silicate weathering and paradoxically drive climate overcooling in response to massive CO<sub>2</sub> release. This instability depends on the initial balance between silicate weathering and organic carbon burial in addition to the state of global phosphorus cycling. It is most strongly expressed at intermediate ocean redox states, which may help us understand the timing of past ice ages.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"389 6767\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.adh7730\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.adh7730","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Instability in the geological regulation of Earth’s climate
Negative feedback between climate and atmospheric carbon dioxide (CO2), mediated by the weathering of silicate minerals on land, is thought to provide the primary regulation of Earth’s climate on geological timescales. By contrast, we found that faster feedbacks involving organic matter are not only critical to Earth system recovery but can also create unexpected instability. Our Earth system model experiments show how sedimentary organic carbon burial, amplified by redox-sensitive phosphorus regeneration, can outweigh silicate weathering and paradoxically drive climate overcooling in response to massive CO2 release. This instability depends on the initial balance between silicate weathering and organic carbon burial in addition to the state of global phosphorus cycling. It is most strongly expressed at intermediate ocean redox states, which may help us understand the timing of past ice ages.
期刊介绍:
Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research.
Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated.
Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.