朝着与CODIS STR档案记录匹配的最小SNP集的方向发展。

IF 4.6 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Tamara Gjorgjieva, Noah A Rosenberg
{"title":"朝着与CODIS STR档案记录匹配的最小SNP集的方向发展。","authors":"Tamara Gjorgjieva, Noah A Rosenberg","doi":"10.1038/s41431-025-01941-7","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic record-matching is a technique by which profiles with one set of genetic markers can be queried against databases of profiles with a different set of markers to determine if profiles containing different marker sets trace to the same individual. In forensic genetics, the potential for using genetic record-matching to test single-nucleotide polymorphism (SNP) profiles for genetic matches to short-tandem repeat (STR) profiles could enable development of backward-compatible SNP marker systems to ultimately replace existing forensic STR systems. This study aims to identify minimal SNP sets for achieving record-matching accuracies comparable to those previously observed with tens or hundreds of thousands of SNPs. Using phased SNP-STR reference data in a worldwide panel of individuals, we evaluate record-matching accuracy with SNP sets chosen by each of a variety of SNP selection strategies. When selecting SNPs randomly, ~9000 SNPs are required for achieving record-matching accuracy comparable to that seen with the full SNP set in the \"needle-in-haystack\" matching scenario, namely 99% of SNP and STR profiles correctly paired with no false-positive identifications in the median accuracy for test sets of size 626 profile pairs. Selecting SNPs based on various thresholds for their minimal minor allele frequency and physical distance to the STR, however, panels of 1800 SNPs, and as few as 900 SNPs, suffice. These results advance toward a potential minimal size for backward-compatible forensic SNP systems that proceed by genetic record-matching.</p>","PeriodicalId":12016,"journal":{"name":"European Journal of Human Genetics","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward minimal SNP sets for record-matching with CODIS STR profiles.\",\"authors\":\"Tamara Gjorgjieva, Noah A Rosenberg\",\"doi\":\"10.1038/s41431-025-01941-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genetic record-matching is a technique by which profiles with one set of genetic markers can be queried against databases of profiles with a different set of markers to determine if profiles containing different marker sets trace to the same individual. In forensic genetics, the potential for using genetic record-matching to test single-nucleotide polymorphism (SNP) profiles for genetic matches to short-tandem repeat (STR) profiles could enable development of backward-compatible SNP marker systems to ultimately replace existing forensic STR systems. This study aims to identify minimal SNP sets for achieving record-matching accuracies comparable to those previously observed with tens or hundreds of thousands of SNPs. Using phased SNP-STR reference data in a worldwide panel of individuals, we evaluate record-matching accuracy with SNP sets chosen by each of a variety of SNP selection strategies. When selecting SNPs randomly, ~9000 SNPs are required for achieving record-matching accuracy comparable to that seen with the full SNP set in the \\\"needle-in-haystack\\\" matching scenario, namely 99% of SNP and STR profiles correctly paired with no false-positive identifications in the median accuracy for test sets of size 626 profile pairs. Selecting SNPs based on various thresholds for their minimal minor allele frequency and physical distance to the STR, however, panels of 1800 SNPs, and as few as 900 SNPs, suffice. These results advance toward a potential minimal size for backward-compatible forensic SNP systems that proceed by genetic record-matching.</p>\",\"PeriodicalId\":12016,\"journal\":{\"name\":\"European Journal of Human Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41431-025-01941-7\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41431-025-01941-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

遗传记录匹配是一种技术,通过该技术,可以将具有一组遗传标记的档案与具有不同标记集的档案数据库进行查询,以确定包含不同标记集的档案是否可追溯到同一个人。在法医遗传学中,利用遗传记录匹配来测试单核苷酸多态性(SNP)谱的潜力,以获得短串联重复序列(STR)谱的遗传匹配,这可能有助于开发向后兼容的SNP标记系统,最终取代现有的法医STR系统。本研究旨在确定最小SNP集,以实现与先前观察到的数万或数十万SNP相媲美的记录匹配准确性。利用全球范围内个体的阶段性SNP- str参考数据,我们评估了由每种SNP选择策略选择的SNP集的记录匹配准确性。在随机选择SNP时,需要约9000个SNP才能达到与“大海捞针”匹配场景中完整SNP集的记录匹配精度,即在626对SNP对的测试集中,99%的SNP和STR图谱正确配对,并且没有假阳性鉴定。然而,根据最小等位基因频率和与STR的物理距离的不同阈值选择SNPs, 1800个SNPs和900个SNPs就足够了。这些结果推进了通过遗传记录匹配进行的向后兼容法医SNP系统的潜在最小尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward minimal SNP sets for record-matching with CODIS STR profiles.

Genetic record-matching is a technique by which profiles with one set of genetic markers can be queried against databases of profiles with a different set of markers to determine if profiles containing different marker sets trace to the same individual. In forensic genetics, the potential for using genetic record-matching to test single-nucleotide polymorphism (SNP) profiles for genetic matches to short-tandem repeat (STR) profiles could enable development of backward-compatible SNP marker systems to ultimately replace existing forensic STR systems. This study aims to identify minimal SNP sets for achieving record-matching accuracies comparable to those previously observed with tens or hundreds of thousands of SNPs. Using phased SNP-STR reference data in a worldwide panel of individuals, we evaluate record-matching accuracy with SNP sets chosen by each of a variety of SNP selection strategies. When selecting SNPs randomly, ~9000 SNPs are required for achieving record-matching accuracy comparable to that seen with the full SNP set in the "needle-in-haystack" matching scenario, namely 99% of SNP and STR profiles correctly paired with no false-positive identifications in the median accuracy for test sets of size 626 profile pairs. Selecting SNPs based on various thresholds for their minimal minor allele frequency and physical distance to the STR, however, panels of 1800 SNPs, and as few as 900 SNPs, suffice. These results advance toward a potential minimal size for backward-compatible forensic SNP systems that proceed by genetic record-matching.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Journal of Human Genetics
European Journal of Human Genetics 生物-生化与分子生物学
CiteScore
9.90
自引率
5.80%
发文量
216
审稿时长
2 months
期刊介绍: The European Journal of Human Genetics is the official journal of the European Society of Human Genetics, publishing high-quality, original research papers, short reports and reviews in the rapidly expanding field of human genetics and genomics. It covers molecular, clinical and cytogenetics, interfacing between advanced biomedical research and the clinician, and bridging the great diversity of facilities, resources and viewpoints in the genetics community. Key areas include: -Monogenic and multifactorial disorders -Development and malformation -Hereditary cancer -Medical Genomics -Gene mapping and functional studies -Genotype-phenotype correlations -Genetic variation and genome diversity -Statistical and computational genetics -Bioinformatics -Advances in diagnostics -Therapy and prevention -Animal models -Genetic services -Community genetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信