改善头颈部肿瘤放疗反应的有希望的靶点和药物。

IF 2.8 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Faris Anad Muhammad, Ayat Hussein Adhab, Morug Salih Mahdi, Ashishkumar Kyada, Subbulakshmi Ganesan, Deepak Bhanot, K Satyam Naidu, Aseel Salah Mansoor, Usama Kadem Radi, Nasr Saadoun Abd, Munther Kadhim
{"title":"改善头颈部肿瘤放疗反应的有希望的靶点和药物。","authors":"Faris Anad Muhammad, Ayat Hussein Adhab, Morug Salih Mahdi, Ashishkumar Kyada, Subbulakshmi Ganesan, Deepak Bhanot, K Satyam Naidu, Aseel Salah Mansoor, Usama Kadem Radi, Nasr Saadoun Abd, Munther Kadhim","doi":"10.2174/0113816128398373250910100446","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck cancers, particularly Head and Neck Squamous Cell Carcinoma (HNSCC), encompass a diverse group of malignancies with intricate cellular landscapes. The Tumor Microenvironment (TME) is characterized by constant communication between cancer cells and their surrounding cells. Stromal components, immune infiltrates, and Extracellular Matrix (ECM) elements all play crucial roles in this process. These dialogues shape tumor behavior, spread, and treatment resistance. At the molecular level, DNA Damage Response (DDR) by tumoral cells can reduce cell elimination via Ionizing Radiation (IR). Human Papillomavirus (HPV) infection, in some cases, further complicates the picture. Recent findings highlight how these molecular responses, as well as immune modulation, remodeling cell metabolism, enhanced growth factors, and hypoxia in TME, can influence tumor responses to IR. These findings may lead to strategies for radiosensitizing head and neck cancers. Unraveling these interactions is key to developing more effective treatments. This review focuses on different mechanisms of radioresistance in head and neck cancers. Then, we provide an overview of different targets and potential adjuvants or drugs for radiosensitization of these malignancies.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Promising Targets and Drugs for Improving Head and Neck Cancer Response to Radiotherapy.\",\"authors\":\"Faris Anad Muhammad, Ayat Hussein Adhab, Morug Salih Mahdi, Ashishkumar Kyada, Subbulakshmi Ganesan, Deepak Bhanot, K Satyam Naidu, Aseel Salah Mansoor, Usama Kadem Radi, Nasr Saadoun Abd, Munther Kadhim\",\"doi\":\"10.2174/0113816128398373250910100446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head and neck cancers, particularly Head and Neck Squamous Cell Carcinoma (HNSCC), encompass a diverse group of malignancies with intricate cellular landscapes. The Tumor Microenvironment (TME) is characterized by constant communication between cancer cells and their surrounding cells. Stromal components, immune infiltrates, and Extracellular Matrix (ECM) elements all play crucial roles in this process. These dialogues shape tumor behavior, spread, and treatment resistance. At the molecular level, DNA Damage Response (DDR) by tumoral cells can reduce cell elimination via Ionizing Radiation (IR). Human Papillomavirus (HPV) infection, in some cases, further complicates the picture. Recent findings highlight how these molecular responses, as well as immune modulation, remodeling cell metabolism, enhanced growth factors, and hypoxia in TME, can influence tumor responses to IR. These findings may lead to strategies for radiosensitizing head and neck cancers. Unraveling these interactions is key to developing more effective treatments. This review focuses on different mechanisms of radioresistance in head and neck cancers. Then, we provide an overview of different targets and potential adjuvants or drugs for radiosensitization of these malignancies.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128398373250910100446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128398373250910100446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

头颈部癌症,特别是头颈部鳞状细胞癌(HNSCC),是一种具有复杂细胞景观的多种恶性肿瘤。肿瘤微环境(Tumor Microenvironment, TME)的特征是癌细胞与其周围细胞之间的持续交流。基质成分、免疫浸润和细胞外基质(ECM)成分在这一过程中都起着至关重要的作用。这些对话决定了肿瘤的行为、扩散和治疗耐药性。在分子水平上,肿瘤细胞的DNA损伤反应(DDR)可以减少电离辐射(IR)对细胞的清除。在某些情况下,人乳头瘤病毒(HPV)感染使情况进一步复杂化。最近的研究结果强调了这些分子反应,以及免疫调节、重塑细胞代谢、生长因子增强和TME缺氧如何影响肿瘤对IR的反应。这些发现可能会导致头颈癌放射增敏的策略。解开这些相互作用是开发更有效治疗方法的关键。本文综述了头颈癌放射耐药的不同机制。然后,我们概述了这些恶性肿瘤放射增敏的不同靶点和潜在佐剂或药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Promising Targets and Drugs for Improving Head and Neck Cancer Response to Radiotherapy.

Head and neck cancers, particularly Head and Neck Squamous Cell Carcinoma (HNSCC), encompass a diverse group of malignancies with intricate cellular landscapes. The Tumor Microenvironment (TME) is characterized by constant communication between cancer cells and their surrounding cells. Stromal components, immune infiltrates, and Extracellular Matrix (ECM) elements all play crucial roles in this process. These dialogues shape tumor behavior, spread, and treatment resistance. At the molecular level, DNA Damage Response (DDR) by tumoral cells can reduce cell elimination via Ionizing Radiation (IR). Human Papillomavirus (HPV) infection, in some cases, further complicates the picture. Recent findings highlight how these molecular responses, as well as immune modulation, remodeling cell metabolism, enhanced growth factors, and hypoxia in TME, can influence tumor responses to IR. These findings may lead to strategies for radiosensitizing head and neck cancers. Unraveling these interactions is key to developing more effective treatments. This review focuses on different mechanisms of radioresistance in head and neck cancers. Then, we provide an overview of different targets and potential adjuvants or drugs for radiosensitization of these malignancies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
0.00%
发文量
302
审稿时长
2 months
期刊介绍: Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field. Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信