基于机器学习优化的高灵敏度太赫兹SPR生物传感器用于结直肠癌检测

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jacob Wekalao , Ahmed Mehaney , May Bin-Jumah , Nassir Saad Alarifi , Mostafa R. Abukhadra , Hussein A. Elsayed , Amuthakkannan Rajakannu , K. Vijayalakshmi
{"title":"基于机器学习优化的高灵敏度太赫兹SPR生物传感器用于结直肠癌检测","authors":"Jacob Wekalao ,&nbsp;Ahmed Mehaney ,&nbsp;May Bin-Jumah ,&nbsp;Nassir Saad Alarifi ,&nbsp;Mostafa R. Abukhadra ,&nbsp;Hussein A. Elsayed ,&nbsp;Amuthakkannan Rajakannu ,&nbsp;K. Vijayalakshmi","doi":"10.1016/j.mssp.2025.110064","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a terahertz-based surface plasmon resonance (SPR) sensor developed for colorectal cancer detection. The device employs a distinctive multi-resonator design that integrates gold, silver, and graphene. Structurally, the sensor comprises an elliptical ring resonator coated with silver, surrounded by a gold-coated circular ring on a silicon dioxide substrate, while a graphene layer is incorporated to enhance sensing performance. Performance analysis was conducted using COMSOL Multiphysics simulations under varying conditions, including graphene chemical potential, incident angles, and resonator dimensions. The proposed sensor demonstrated a maximum sensitivity of 1100 GHz/RIU across a refractive index range of 1.329–1.348 RIU, achieving an optimal figure of merit of 17.460 RIU<sup>−1</sup> at 0.719 THz. Additionally, a Random Forest Regression model was used to optimize sensor parameters, achieving up to 100 % accuracy in predicting sensor responses. The device also demonstrated potential as a 2-bit binary encoder, highlighting its versatility for both biosensing and data encoding applications.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110064"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-sensitivity terahertz SPR biosensor with machine learning optimization for colorectal cancer detection\",\"authors\":\"Jacob Wekalao ,&nbsp;Ahmed Mehaney ,&nbsp;May Bin-Jumah ,&nbsp;Nassir Saad Alarifi ,&nbsp;Mostafa R. Abukhadra ,&nbsp;Hussein A. Elsayed ,&nbsp;Amuthakkannan Rajakannu ,&nbsp;K. Vijayalakshmi\",\"doi\":\"10.1016/j.mssp.2025.110064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a terahertz-based surface plasmon resonance (SPR) sensor developed for colorectal cancer detection. The device employs a distinctive multi-resonator design that integrates gold, silver, and graphene. Structurally, the sensor comprises an elliptical ring resonator coated with silver, surrounded by a gold-coated circular ring on a silicon dioxide substrate, while a graphene layer is incorporated to enhance sensing performance. Performance analysis was conducted using COMSOL Multiphysics simulations under varying conditions, including graphene chemical potential, incident angles, and resonator dimensions. The proposed sensor demonstrated a maximum sensitivity of 1100 GHz/RIU across a refractive index range of 1.329–1.348 RIU, achieving an optimal figure of merit of 17.460 RIU<sup>−1</sup> at 0.719 THz. Additionally, a Random Forest Regression model was used to optimize sensor parameters, achieving up to 100 % accuracy in predicting sensor responses. The device also demonstrated potential as a 2-bit binary encoder, highlighting its versatility for both biosensing and data encoding applications.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"201 \",\"pages\":\"Article 110064\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125008017\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125008017","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种用于结直肠癌检测的太赫兹表面等离子体共振(SPR)传感器。该设备采用独特的多谐振器设计,集成了金、银和石墨烯。在结构上,该传感器包括一个涂有银的椭圆环形谐振器,在二氧化硅衬底上被涂有金的圆形环包围,同时加入一层石墨烯层以增强传感性能。使用COMSOL Multiphysics模拟在不同条件下进行性能分析,包括石墨烯化学势、入射角和谐振器尺寸。该传感器在1.329-1.348 RIU折射率范围内的最大灵敏度为1100 GHz/RIU,在0.719太赫兹处的最佳性能值为17.460 RIU−1。此外,随机森林回归模型用于优化传感器参数,在预测传感器响应方面达到100%的准确性。该设备还展示了作为2位二进制编码器的潜力,突出了其在生物传感和数据编码应用中的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A high-sensitivity terahertz SPR biosensor with machine learning optimization for colorectal cancer detection
This study presents a terahertz-based surface plasmon resonance (SPR) sensor developed for colorectal cancer detection. The device employs a distinctive multi-resonator design that integrates gold, silver, and graphene. Structurally, the sensor comprises an elliptical ring resonator coated with silver, surrounded by a gold-coated circular ring on a silicon dioxide substrate, while a graphene layer is incorporated to enhance sensing performance. Performance analysis was conducted using COMSOL Multiphysics simulations under varying conditions, including graphene chemical potential, incident angles, and resonator dimensions. The proposed sensor demonstrated a maximum sensitivity of 1100 GHz/RIU across a refractive index range of 1.329–1.348 RIU, achieving an optimal figure of merit of 17.460 RIU−1 at 0.719 THz. Additionally, a Random Forest Regression model was used to optimize sensor parameters, achieving up to 100 % accuracy in predicting sensor responses. The device also demonstrated potential as a 2-bit binary encoder, highlighting its versatility for both biosensing and data encoding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信