基于无线足部传感器模块的时空步态特征参数提取。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ratan Das, Preeti Khera, Neelesh Kumar
{"title":"基于无线足部传感器模块的时空步态特征参数提取。","authors":"Ratan Das, Preeti Khera, Neelesh Kumar","doi":"10.1080/10255842.2025.2555398","DOIUrl":null,"url":null,"abstract":"<p><p>This work reports the extraction and evaluation of clinically relevant spatiotemporal and statistical gait parameters from developed wireless foot sensor module as recommended by the Biomathics and Canadian Gait Consortium Initiative. Further, normalization of extracted spatiotemporal gait parameters reduces inter-subject physiological variations. To validate their performance towards gait analysis, a machine learning framework is implemented for personnel identification. The study results suggest a promising potential for utilizing the extracted feature-set for the automatic multiclass gait disorders classification. Developed module is a low cost, easy-to-use device, and has potential application for setups with limited access to state of art gait analysis laboratory.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-11"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric extraction of spatiotemporal gait features using wireless foot sensor module.\",\"authors\":\"Ratan Das, Preeti Khera, Neelesh Kumar\",\"doi\":\"10.1080/10255842.2025.2555398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work reports the extraction and evaluation of clinically relevant spatiotemporal and statistical gait parameters from developed wireless foot sensor module as recommended by the Biomathics and Canadian Gait Consortium Initiative. Further, normalization of extracted spatiotemporal gait parameters reduces inter-subject physiological variations. To validate their performance towards gait analysis, a machine learning framework is implemented for personnel identification. The study results suggest a promising potential for utilizing the extracted feature-set for the automatic multiclass gait disorders classification. Developed module is a low cost, easy-to-use device, and has potential application for setups with limited access to state of art gait analysis laboratory.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2555398\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2555398","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

这项工作报告了从生物力学和加拿大步态联盟倡议推荐的开发的无线足部传感器模块中提取和评估临床相关的时空和统计步态参数。此外,对提取的时空步态参数进行归一化,减少受试者之间的生理变化。为了验证它们在步态分析方面的性能,实现了用于人员识别的机器学习框架。研究结果表明,利用提取的特征集进行多类步态障碍自动分类具有很大的潜力。所开发的模块是一种低成本,易于使用的设备,并且具有潜在的应用,可以用于访问最先进的步态分析实验室。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric extraction of spatiotemporal gait features using wireless foot sensor module.

This work reports the extraction and evaluation of clinically relevant spatiotemporal and statistical gait parameters from developed wireless foot sensor module as recommended by the Biomathics and Canadian Gait Consortium Initiative. Further, normalization of extracted spatiotemporal gait parameters reduces inter-subject physiological variations. To validate their performance towards gait analysis, a machine learning framework is implemented for personnel identification. The study results suggest a promising potential for utilizing the extracted feature-set for the automatic multiclass gait disorders classification. Developed module is a low cost, easy-to-use device, and has potential application for setups with limited access to state of art gait analysis laboratory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信