Sharadh Jois, Erica Lee, Philip Li, Tsegereda Esatu, Jason Fleischer, Edwin Quinn, Genda Gu, Vadym Kulichenko, Luis Balicas, Son T. Le, Samuel W. LaGasse, Aubrey T. Hanbicki, Adam L. Friedman
{"title":"直接写入印刷接触层和二维材料","authors":"Sharadh Jois, Erica Lee, Philip Li, Tsegereda Esatu, Jason Fleischer, Edwin Quinn, Genda Gu, Vadym Kulichenko, Luis Balicas, Son T. Le, Samuel W. LaGasse, Aubrey T. Hanbicki, Adam L. Friedman","doi":"10.1002/aelm.202400927","DOIUrl":null,"url":null,"abstract":"<p>Advancements in fabrication methods have shaped new computing device technologies. Among these methods, depositing electrical contacts to the channel material is fundamental to device characterization. Novel layered and 2D materials are promising for next-generation computing electronic channel materials. Direct-write printing of conductive inks is introduced as a surprisingly effective, significantly faster, and cleaner method to contact different classes of layered materials, including graphene (semi-metal), MoS<sub>2</sub> (semiconductor), Bi-2212 (superconductor), and Fe<sub>5</sub>GeTe<sub>2</sub> (metallic ferromagnet). Based on the electrical response, the quality of the printed contacts is comparable to what is achievable with resist-based lithography techniques. These devices are tested by sweeping gate voltage, temperature, and magnetic field to show that the materials remain pristine post-processing. This work demonstrates that direct-write printing is an agile method for prototyping and characterizing the electrical properties of novel layered materials.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 15","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400927","citationCount":"0","resultStr":"{\"title\":\"Direct-Write Printed Contacts to Layered and 2D Materials\",\"authors\":\"Sharadh Jois, Erica Lee, Philip Li, Tsegereda Esatu, Jason Fleischer, Edwin Quinn, Genda Gu, Vadym Kulichenko, Luis Balicas, Son T. Le, Samuel W. LaGasse, Aubrey T. Hanbicki, Adam L. Friedman\",\"doi\":\"10.1002/aelm.202400927\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Advancements in fabrication methods have shaped new computing device technologies. Among these methods, depositing electrical contacts to the channel material is fundamental to device characterization. Novel layered and 2D materials are promising for next-generation computing electronic channel materials. Direct-write printing of conductive inks is introduced as a surprisingly effective, significantly faster, and cleaner method to contact different classes of layered materials, including graphene (semi-metal), MoS<sub>2</sub> (semiconductor), Bi-2212 (superconductor), and Fe<sub>5</sub>GeTe<sub>2</sub> (metallic ferromagnet). Based on the electrical response, the quality of the printed contacts is comparable to what is achievable with resist-based lithography techniques. These devices are tested by sweeping gate voltage, temperature, and magnetic field to show that the materials remain pristine post-processing. This work demonstrates that direct-write printing is an agile method for prototyping and characterizing the electrical properties of novel layered materials.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"11 15\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400927\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400927\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400927","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Direct-Write Printed Contacts to Layered and 2D Materials
Advancements in fabrication methods have shaped new computing device technologies. Among these methods, depositing electrical contacts to the channel material is fundamental to device characterization. Novel layered and 2D materials are promising for next-generation computing electronic channel materials. Direct-write printing of conductive inks is introduced as a surprisingly effective, significantly faster, and cleaner method to contact different classes of layered materials, including graphene (semi-metal), MoS2 (semiconductor), Bi-2212 (superconductor), and Fe5GeTe2 (metallic ferromagnet). Based on the electrical response, the quality of the printed contacts is comparable to what is achievable with resist-based lithography techniques. These devices are tested by sweeping gate voltage, temperature, and magnetic field to show that the materials remain pristine post-processing. This work demonstrates that direct-write printing is an agile method for prototyping and characterizing the electrical properties of novel layered materials.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.