扭转角和自旋轨道耦合对MoS2/WS2超晶格异质结构层间耦合和光电性能的影响

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaofeng Wang, Qing Wang, Yuqiang Wu, Mengtao Sun, Wen Liu, Shuo Cao
{"title":"扭转角和自旋轨道耦合对MoS2/WS2超晶格异质结构层间耦合和光电性能的影响","authors":"Shaofeng Wang,&nbsp;Qing Wang,&nbsp;Yuqiang Wu,&nbsp;Mengtao Sun,&nbsp;Wen Liu,&nbsp;Shuo Cao","doi":"10.1002/aelm.202500148","DOIUrl":null,"url":null,"abstract":"<p>Twisted 2D bilayer transition metal dichalcogenides (TMDs) heterostructures exhibit rich physical properties due to the interaction of interlayer coupling and moiré superlattice effects. However, the influence of interlayer coupling changes induced by the twist angle on various TMDs properties still requires further exploration. To systematically investigate how the twist angle influences the structural, electronic and optical properties of TMDs, density functional theory (DFT) is used to examine <span></span><math>\n <semantics>\n <msqrt>\n <mn>7</mn>\n </msqrt>\n <annotation>$\\sqrt 7 $</annotation>\n </semantics></math> MoS<sub>2</sub>/WS<sub>2</sub> superlattice heterostructures. Compared with that of the 2H stack, the interlayer coupling effect is weakened in the 21.79° and particularly 38.21° stacked heterostructures. A larger twist angle promotes an indirect-to-direct bandgap transition trend. Additionally, the twist angle can cause interlayer charge redistribution, which varies with the moiré pattern. Moreover, spin‒orbit coupling (SOC) causes a redshift by reducing the bandgap in the absorption spectra, and the twist angle suppresses interlayer direct transitions in the 𝜥 valley and alters the Raman and infrared spectra, with low-frequency Raman modes providing a powerful tool for characterizing changes in interlayer coupling. These findings highlight the critical role of the twist angle in tuning the properties of TMDs heterostructures, with promising implications for optoelectronic and valleytronic applications.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 15","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500148","citationCount":"0","resultStr":"{\"title\":\"Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures\",\"authors\":\"Shaofeng Wang,&nbsp;Qing Wang,&nbsp;Yuqiang Wu,&nbsp;Mengtao Sun,&nbsp;Wen Liu,&nbsp;Shuo Cao\",\"doi\":\"10.1002/aelm.202500148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Twisted 2D bilayer transition metal dichalcogenides (TMDs) heterostructures exhibit rich physical properties due to the interaction of interlayer coupling and moiré superlattice effects. However, the influence of interlayer coupling changes induced by the twist angle on various TMDs properties still requires further exploration. To systematically investigate how the twist angle influences the structural, electronic and optical properties of TMDs, density functional theory (DFT) is used to examine <span></span><math>\\n <semantics>\\n <msqrt>\\n <mn>7</mn>\\n </msqrt>\\n <annotation>$\\\\sqrt 7 $</annotation>\\n </semantics></math> MoS<sub>2</sub>/WS<sub>2</sub> superlattice heterostructures. Compared with that of the 2H stack, the interlayer coupling effect is weakened in the 21.79° and particularly 38.21° stacked heterostructures. A larger twist angle promotes an indirect-to-direct bandgap transition trend. Additionally, the twist angle can cause interlayer charge redistribution, which varies with the moiré pattern. Moreover, spin‒orbit coupling (SOC) causes a redshift by reducing the bandgap in the absorption spectra, and the twist angle suppresses interlayer direct transitions in the 𝜥 valley and alters the Raman and infrared spectra, with low-frequency Raman modes providing a powerful tool for characterizing changes in interlayer coupling. These findings highlight the critical role of the twist angle in tuning the properties of TMDs heterostructures, with promising implications for optoelectronic and valleytronic applications.</p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"11 15\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202500148\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202500148\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202500148","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

扭曲的二维双层过渡金属二硫化物(TMDs)异质结构由于层间耦合和摩尔超晶格效应的相互作用而表现出丰富的物理性质。然而,由扭转角引起的层间耦合变化对tmd各种性能的影响仍需进一步探索。为了系统地研究扭转角如何影响TMDs的结构、电子和光学性质,采用密度泛函理论(DFT)研究了7 $\sqrt 7 $ MoS2/WS2超晶格异质结构。与2H叠层相比,21.79°、特别是38.21°叠层异质结构层间耦合效应减弱。较大的扭转角促进了间接到直接的带隙转变趋势。此外,扭转角会引起层间电荷的重新分配,这种重新分配随莫尔条纹的变化而变化。此外,自旋轨道耦合(SOC)通过减小吸收光谱中的带隙引起红移,扭转角抑制了𝜥谷中的层间直接跃迁,改变了拉曼和红外光谱,低频拉曼模式为表征层间耦合的变化提供了有力的工具。这些发现强调了扭转角在调整tmd异质结构特性中的关键作用,对光电和谷电子应用具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures

Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures

Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures

Influence of the Twist Angle and Spin–Orbit Coupling on the Interlayer Coupling and Optoelectronic Properties of MoS2/WS2 Superlattice Heterostructures

Twisted 2D bilayer transition metal dichalcogenides (TMDs) heterostructures exhibit rich physical properties due to the interaction of interlayer coupling and moiré superlattice effects. However, the influence of interlayer coupling changes induced by the twist angle on various TMDs properties still requires further exploration. To systematically investigate how the twist angle influences the structural, electronic and optical properties of TMDs, density functional theory (DFT) is used to examine 7 $\sqrt 7 $ MoS2/WS2 superlattice heterostructures. Compared with that of the 2H stack, the interlayer coupling effect is weakened in the 21.79° and particularly 38.21° stacked heterostructures. A larger twist angle promotes an indirect-to-direct bandgap transition trend. Additionally, the twist angle can cause interlayer charge redistribution, which varies with the moiré pattern. Moreover, spin‒orbit coupling (SOC) causes a redshift by reducing the bandgap in the absorption spectra, and the twist angle suppresses interlayer direct transitions in the 𝜥 valley and alters the Raman and infrared spectra, with low-frequency Raman modes providing a powerful tool for characterizing changes in interlayer coupling. These findings highlight the critical role of the twist angle in tuning the properties of TMDs heterostructures, with promising implications for optoelectronic and valleytronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信