通过机器学习回归的IC建模:SPICE集成的数据驱动方法

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Marco Atlante;Riccardo Trinchero;Igor S. Stievano;Mihai Telescu;Noël Tanguy
{"title":"通过机器学习回归的IC建模:SPICE集成的数据驱动方法","authors":"Marco Atlante;Riccardo Trinchero;Igor S. Stievano;Mihai Telescu;Noël Tanguy","doi":"10.1109/TCPMT.2025.3584470","DOIUrl":null,"url":null,"abstract":"This article presents a method for generating accurate and efficient macromodels of high-speed input/output (I/O) buffers. Extending existing techniques, the proposed approach enables a modular and scalable model generation tool based on machine learning. Given the limitations of traditional methods, this work leverages kernel regression to develop SPICE-compliant models. Two compression schemes, random selection and Nyström approximation, are used and thoroughly compared to reduce the number of expansion terms, with beneficial effects in terms of compactness of the SPICE implementation. The effectiveness of the method in terms of model accuracy and efficiency is stressed through real devices and typical signal and power integrity (SIPI) cosimulations.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 9","pages":"1814-1822"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IC Modeling via Machine Learning Regressions: A Data-Driven Approach to SPICE Integration\",\"authors\":\"Marco Atlante;Riccardo Trinchero;Igor S. Stievano;Mihai Telescu;Noël Tanguy\",\"doi\":\"10.1109/TCPMT.2025.3584470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a method for generating accurate and efficient macromodels of high-speed input/output (I/O) buffers. Extending existing techniques, the proposed approach enables a modular and scalable model generation tool based on machine learning. Given the limitations of traditional methods, this work leverages kernel regression to develop SPICE-compliant models. Two compression schemes, random selection and Nyström approximation, are used and thoroughly compared to reduce the number of expansion terms, with beneficial effects in terms of compactness of the SPICE implementation. The effectiveness of the method in terms of model accuracy and efficiency is stressed through real devices and typical signal and power integrity (SIPI) cosimulations.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 9\",\"pages\":\"1814-1822\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11059943/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11059943/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种生成高速输入/输出(I/O)缓冲区的精确和高效宏模型的方法。该方法扩展了现有技术,实现了基于机器学习的模块化和可扩展的模型生成工具。考虑到传统方法的局限性,这项工作利用内核回归来开发符合spice的模型。我们使用了随机选择和Nyström近似两种压缩方案,并对其进行了彻底的比较,以减少扩展项的数量,这在SPICE实现的紧凑性方面产生了有益的影响。通过实际设备和典型的信号功率完整性(SIPI)协同仿真,强调了该方法在模型精度和效率方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IC Modeling via Machine Learning Regressions: A Data-Driven Approach to SPICE Integration
This article presents a method for generating accurate and efficient macromodels of high-speed input/output (I/O) buffers. Extending existing techniques, the proposed approach enables a modular and scalable model generation tool based on machine learning. Given the limitations of traditional methods, this work leverages kernel regression to develop SPICE-compliant models. Two compression schemes, random selection and Nyström approximation, are used and thoroughly compared to reduce the number of expansion terms, with beneficial effects in terms of compactness of the SPICE implementation. The effectiveness of the method in terms of model accuracy and efficiency is stressed through real devices and typical signal and power integrity (SIPI) cosimulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信