Jin Wu;Yuefeng Hou;Liqi Yang;Zhenshuai Fu;Meicheng Liu;Dawei Zhang;Mingtao Zhang;Kaixue Ma
{"title":"基于混合集成悬索线技术的低损耗自封装全移相反射式移相器","authors":"Jin Wu;Yuefeng Hou;Liqi Yang;Zhenshuai Fu;Meicheng Liu;Dawei Zhang;Mingtao Zhang;Kaixue Ma","doi":"10.1109/TCPMT.2025.3576350","DOIUrl":null,"url":null,"abstract":"A low-loss and self-packaged full phase shift reflection-type phase shifter (RTPS) based on the hybrid integrated suspended line (HISL) technology is introduced. The proposed RTPS consists of a 90° branch line coupler and two tunable parallel <italic>L</i>–<italic>C</i> loads connected to the through port and coupled ports. First, an enhanced two-step phase extraction method is proposed, reducing the evaluation state of the RTPS and achieving the minimal phase step while keeping the number of states unchanged. Second, the HISL technology is adopted in the design to achieve low insertion loss (IL). Due to the self-packaging characteristics of HISL, the proposed RTPS effectively avoids interference with surrounding circuits and is highly integrated. Third, the low-power digital tunable capacitor (DTC) with a bus interface is used as the tunable load, making the RTPS easy to integrate into large-scale phased array systems. Finally, a prototype is fabricated by using the sheet metal and PCB process. At the center frequency of 2.45 GHz, the proposed RTPS achieved a measured phase shift range (PSR) of 368° under 128 sweeping states with an IL of 0.9–1.6 dB, and the figure of merit (FoM) is 230°/dB.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 9","pages":"2010-2018"},"PeriodicalIF":3.0000,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Loss Self-Packaged Full Phase Shift Reflection-Type Phase Shifter Based on Hybrid Integrated Suspended Line Technology\",\"authors\":\"Jin Wu;Yuefeng Hou;Liqi Yang;Zhenshuai Fu;Meicheng Liu;Dawei Zhang;Mingtao Zhang;Kaixue Ma\",\"doi\":\"10.1109/TCPMT.2025.3576350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-loss and self-packaged full phase shift reflection-type phase shifter (RTPS) based on the hybrid integrated suspended line (HISL) technology is introduced. The proposed RTPS consists of a 90° branch line coupler and two tunable parallel <italic>L</i>–<italic>C</i> loads connected to the through port and coupled ports. First, an enhanced two-step phase extraction method is proposed, reducing the evaluation state of the RTPS and achieving the minimal phase step while keeping the number of states unchanged. Second, the HISL technology is adopted in the design to achieve low insertion loss (IL). Due to the self-packaging characteristics of HISL, the proposed RTPS effectively avoids interference with surrounding circuits and is highly integrated. Third, the low-power digital tunable capacitor (DTC) with a bus interface is used as the tunable load, making the RTPS easy to integrate into large-scale phased array systems. Finally, a prototype is fabricated by using the sheet metal and PCB process. At the center frequency of 2.45 GHz, the proposed RTPS achieved a measured phase shift range (PSR) of 368° under 128 sweeping states with an IL of 0.9–1.6 dB, and the figure of merit (FoM) is 230°/dB.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 9\",\"pages\":\"2010-2018\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11023874/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11023874/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Low-Loss Self-Packaged Full Phase Shift Reflection-Type Phase Shifter Based on Hybrid Integrated Suspended Line Technology
A low-loss and self-packaged full phase shift reflection-type phase shifter (RTPS) based on the hybrid integrated suspended line (HISL) technology is introduced. The proposed RTPS consists of a 90° branch line coupler and two tunable parallel L–C loads connected to the through port and coupled ports. First, an enhanced two-step phase extraction method is proposed, reducing the evaluation state of the RTPS and achieving the minimal phase step while keeping the number of states unchanged. Second, the HISL technology is adopted in the design to achieve low insertion loss (IL). Due to the self-packaging characteristics of HISL, the proposed RTPS effectively avoids interference with surrounding circuits and is highly integrated. Third, the low-power digital tunable capacitor (DTC) with a bus interface is used as the tunable load, making the RTPS easy to integrate into large-scale phased array systems. Finally, a prototype is fabricated by using the sheet metal and PCB process. At the center frequency of 2.45 GHz, the proposed RTPS achieved a measured phase shift range (PSR) of 368° under 128 sweeping states with an IL of 0.9–1.6 dB, and the figure of merit (FoM) is 230°/dB.
期刊介绍:
IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.