可重定义微波无源元件实现的柔性射频链路

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Lei Sang;Hui Tian;Wenlong Bi;Shengjie Zhao;Ping Li;Qiang Chen;Hao Tu
{"title":"可重定义微波无源元件实现的柔性射频链路","authors":"Lei Sang;Hui Tian;Wenlong Bi;Shengjie Zhao;Ping Li;Qiang Chen;Hao Tu","doi":"10.1109/TCPMT.2025.3591150","DOIUrl":null,"url":null,"abstract":"To realize “FPGA-like” microwave components and enhance the reconfiguration ability of microwave links, this article proposes a redefinable microwave component that breaks the limitations of conventional microwave components with single functionality. The redefinable microwave components adopt a “combining tangram” design approach to identify the “greatest common divisor” among several microwave functional structures. The patch + gap structure is used as the multiplex unit, and the RF switches are used to control the current flow direction, forming different electromagnetic distributions, thus achieving dynamic reconfiguration of microwave functions. The resonant performance is adjusted using variable capacitors, enabling the reconfiguration of the performance. The test results of the sample indicate that the microwave passive component can achieve software-defined antenna, filtering, and coupling functions, with adjustable center frequencies for all three functions. Compared with commonly used antenna, filter, or coupler, the performance metrics of the redefinable microwave components have not decreased. Furthermore, the component has also been applied for practical validation in radar systems. The demonstration results show that the redefinable microwave component significantly improves the reconfiguration performance of the microwave link, enabling the microwave system to meet the requirements of multiple application scenarios such as imaging, communication, and distance measurement.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 9","pages":"1973-1985"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flexible RF Link Enabled by the Redefinable Microwave Passive Components\",\"authors\":\"Lei Sang;Hui Tian;Wenlong Bi;Shengjie Zhao;Ping Li;Qiang Chen;Hao Tu\",\"doi\":\"10.1109/TCPMT.2025.3591150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To realize “FPGA-like” microwave components and enhance the reconfiguration ability of microwave links, this article proposes a redefinable microwave component that breaks the limitations of conventional microwave components with single functionality. The redefinable microwave components adopt a “combining tangram” design approach to identify the “greatest common divisor” among several microwave functional structures. The patch + gap structure is used as the multiplex unit, and the RF switches are used to control the current flow direction, forming different electromagnetic distributions, thus achieving dynamic reconfiguration of microwave functions. The resonant performance is adjusted using variable capacitors, enabling the reconfiguration of the performance. The test results of the sample indicate that the microwave passive component can achieve software-defined antenna, filtering, and coupling functions, with adjustable center frequencies for all three functions. Compared with commonly used antenna, filter, or coupler, the performance metrics of the redefinable microwave components have not decreased. Furthermore, the component has also been applied for practical validation in radar systems. The demonstration results show that the redefinable microwave component significantly improves the reconfiguration performance of the microwave link, enabling the microwave system to meet the requirements of multiple application scenarios such as imaging, communication, and distance measurement.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 9\",\"pages\":\"1973-1985\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11087648/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11087648/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

为了实现“类fpga”微波元件,增强微波链路的可重构能力,本文提出了一种可重定义的微波元件,打破了传统微波元件功能单一的局限。可重新定义的微波元件采用“组合七巧板”设计方法来识别多个微波功能结构之间的“最大公约数”。采用贴片+缝隙结构作为复用单元,利用射频开关控制电流流向,形成不同的电磁分布,实现微波功能的动态重构。使用可变电容器调整谐振性能,从而实现性能的重新配置。样品的测试结果表明,该微波无源元件可以实现软件定义的天线、滤波和耦合功能,并且这三个功能的中心频率都是可调的。与常用的天线、滤波器或耦合器相比,可重定义微波元件的性能指标没有降低。此外,该组件还在雷达系统中进行了实际验证。演示结果表明,可重定义微波组件显著提高了微波链路的可重构性能,使微波系统能够满足成像、通信、距离测量等多种应用场景的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Flexible RF Link Enabled by the Redefinable Microwave Passive Components
To realize “FPGA-like” microwave components and enhance the reconfiguration ability of microwave links, this article proposes a redefinable microwave component that breaks the limitations of conventional microwave components with single functionality. The redefinable microwave components adopt a “combining tangram” design approach to identify the “greatest common divisor” among several microwave functional structures. The patch + gap structure is used as the multiplex unit, and the RF switches are used to control the current flow direction, forming different electromagnetic distributions, thus achieving dynamic reconfiguration of microwave functions. The resonant performance is adjusted using variable capacitors, enabling the reconfiguration of the performance. The test results of the sample indicate that the microwave passive component can achieve software-defined antenna, filtering, and coupling functions, with adjustable center frequencies for all three functions. Compared with commonly used antenna, filter, or coupler, the performance metrics of the redefinable microwave components have not decreased. Furthermore, the component has also been applied for practical validation in radar systems. The demonstration results show that the redefinable microwave component significantly improves the reconfiguration performance of the microwave link, enabling the microwave system to meet the requirements of multiple application scenarios such as imaging, communication, and distance measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信