利用物理信息理性Szegö内核进行微波设计的频谱贝叶斯优化

IF 3 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yens Lindemans;Thijs Ullrick;Ivo Couckuyt;Tim Pattyn;Dirk Deschrijver;Dries Vande Ginste;Tom Dhaene
{"title":"利用物理信息理性Szegö内核进行微波设计的频谱贝叶斯优化","authors":"Yens Lindemans;Thijs Ullrick;Ivo Couckuyt;Tim Pattyn;Dirk Deschrijver;Dries Vande Ginste;Tom Dhaene","doi":"10.1109/TCPMT.2025.3592441","DOIUrl":null,"url":null,"abstract":"Microwave device design increasingly relies on surrogate modeling to accelerate optimization and reduce costly electromagnetic (EM) simulations. This article presents a spectral Bayesian optimization (SBO) framework leveraging a physics-informed Gaussian process (GP) with a rational complex-valued Szegö kernel and input warping to enhance surrogate accuracy and data efficiency. Unlike conventional methods that model scalar objectives, our approach directly learns the complex-valued frequency response, enforcing causality and Hermitian symmetry. Effectiveness is demonstrated in two cases: a zig-zag microstrip bandpass filter optimized for magnitude response and a passive differential equalizer optimized for both transmission magnitude and group delay. By embedding prior physics and modeling directly in the frequency domain, the method enables accurate, sample-efficient optimization of frequency-dependent behavior. This work shows how physics-informed Bayesian optimization (BO) can significantly improve microwave device design efficiency.","PeriodicalId":13085,"journal":{"name":"IEEE Transactions on Components, Packaging and Manufacturing Technology","volume":"15 9","pages":"1836-1846"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Bayesian Optimization Using a Physics-Informed Rational Szegö Kernel for Microwave Design\",\"authors\":\"Yens Lindemans;Thijs Ullrick;Ivo Couckuyt;Tim Pattyn;Dirk Deschrijver;Dries Vande Ginste;Tom Dhaene\",\"doi\":\"10.1109/TCPMT.2025.3592441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microwave device design increasingly relies on surrogate modeling to accelerate optimization and reduce costly electromagnetic (EM) simulations. This article presents a spectral Bayesian optimization (SBO) framework leveraging a physics-informed Gaussian process (GP) with a rational complex-valued Szegö kernel and input warping to enhance surrogate accuracy and data efficiency. Unlike conventional methods that model scalar objectives, our approach directly learns the complex-valued frequency response, enforcing causality and Hermitian symmetry. Effectiveness is demonstrated in two cases: a zig-zag microstrip bandpass filter optimized for magnitude response and a passive differential equalizer optimized for both transmission magnitude and group delay. By embedding prior physics and modeling directly in the frequency domain, the method enables accurate, sample-efficient optimization of frequency-dependent behavior. This work shows how physics-informed Bayesian optimization (BO) can significantly improve microwave device design efficiency.\",\"PeriodicalId\":13085,\"journal\":{\"name\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"volume\":\"15 9\",\"pages\":\"1836-1846\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Components, Packaging and Manufacturing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11095709/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Components, Packaging and Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11095709/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微波器件设计越来越依赖于代理建模来加速优化和减少昂贵的电磁(EM)仿真。本文提出了一种谱贝叶斯优化(SBO)框架,利用具有合理复值Szegö内核和输入翘曲的物理信息高斯过程(GP)来提高代理精度和数据效率。与对标量目标建模的传统方法不同,我们的方法直接学习复值频率响应,强化因果关系和厄米对称。在两种情况下证明了有效性:为幅度响应优化的锯齿形微带带通滤波器和为传输幅度和群延迟优化的无源差分均衡器。通过在频域中直接嵌入先验物理和建模,该方法能够精确、高效地优化频率依赖行为。这项工作显示了物理信息贝叶斯优化(BO)如何显著提高微波器件的设计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral Bayesian Optimization Using a Physics-Informed Rational Szegö Kernel for Microwave Design
Microwave device design increasingly relies on surrogate modeling to accelerate optimization and reduce costly electromagnetic (EM) simulations. This article presents a spectral Bayesian optimization (SBO) framework leveraging a physics-informed Gaussian process (GP) with a rational complex-valued Szegö kernel and input warping to enhance surrogate accuracy and data efficiency. Unlike conventional methods that model scalar objectives, our approach directly learns the complex-valued frequency response, enforcing causality and Hermitian symmetry. Effectiveness is demonstrated in two cases: a zig-zag microstrip bandpass filter optimized for magnitude response and a passive differential equalizer optimized for both transmission magnitude and group delay. By embedding prior physics and modeling directly in the frequency domain, the method enables accurate, sample-efficient optimization of frequency-dependent behavior. This work shows how physics-informed Bayesian optimization (BO) can significantly improve microwave device design efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Components, Packaging and Manufacturing Technology
IEEE Transactions on Components, Packaging and Manufacturing Technology ENGINEERING, MANUFACTURING-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.70
自引率
13.60%
发文量
203
审稿时长
3 months
期刊介绍: IEEE Transactions on Components, Packaging, and Manufacturing Technology publishes research and application articles on modeling, design, building blocks, technical infrastructure, and analysis underpinning electronic, photonic and MEMS packaging, in addition to new developments in passive components, electrical contacts and connectors, thermal management, and device reliability; as well as the manufacture of electronics parts and assemblies, with broad coverage of design, factory modeling, assembly methods, quality, product robustness, and design-for-environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信