Siyu Yao , Tong Yu , Alessandra Fantina Victorio Ramos , Zhongkun Zhang , Zulipikaer Rouzi , Luis Rodriguez-Saona
{"title":"基于振动光谱和机器学习的食品真菌毒素智能原位检测研究","authors":"Siyu Yao , Tong Yu , Alessandra Fantina Victorio Ramos , Zhongkun Zhang , Zulipikaer Rouzi , Luis Rodriguez-Saona","doi":"10.1016/j.fochx.2025.103016","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and <em>in-situ</em> detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"31 ","pages":"Article 103016"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward smart and in-situ mycotoxin detection in food via vibrational spectroscopy and machine learning\",\"authors\":\"Siyu Yao , Tong Yu , Alessandra Fantina Victorio Ramos , Zhongkun Zhang , Zulipikaer Rouzi , Luis Rodriguez-Saona\",\"doi\":\"10.1016/j.fochx.2025.103016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and <em>in-situ</em> detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"31 \",\"pages\":\"Article 103016\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157525008636\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525008636","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Toward smart and in-situ mycotoxin detection in food via vibrational spectroscopy and machine learning
Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and in-situ detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.