基于振动光谱和机器学习的食品真菌毒素智能原位检测研究

IF 8.2 1区 农林科学 Q1 CHEMISTRY, APPLIED
Siyu Yao , Tong Yu , Alessandra Fantina Victorio Ramos , Zhongkun Zhang , Zulipikaer Rouzi , Luis Rodriguez-Saona
{"title":"基于振动光谱和机器学习的食品真菌毒素智能原位检测研究","authors":"Siyu Yao ,&nbsp;Tong Yu ,&nbsp;Alessandra Fantina Victorio Ramos ,&nbsp;Zhongkun Zhang ,&nbsp;Zulipikaer Rouzi ,&nbsp;Luis Rodriguez-Saona","doi":"10.1016/j.fochx.2025.103016","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and <em>in-situ</em> detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.</div></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"31 ","pages":"Article 103016"},"PeriodicalIF":8.2000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward smart and in-situ mycotoxin detection in food via vibrational spectroscopy and machine learning\",\"authors\":\"Siyu Yao ,&nbsp;Tong Yu ,&nbsp;Alessandra Fantina Victorio Ramos ,&nbsp;Zhongkun Zhang ,&nbsp;Zulipikaer Rouzi ,&nbsp;Luis Rodriguez-Saona\",\"doi\":\"10.1016/j.fochx.2025.103016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and <em>in-situ</em> detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.</div></div>\",\"PeriodicalId\":12334,\"journal\":{\"name\":\"Food Chemistry: X\",\"volume\":\"31 \",\"pages\":\"Article 103016\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry: X\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590157525008636\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157525008636","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

振动光谱与机器学习相结合的最新进展使复杂食品基质中真菌毒素的智能和原位检测成为可能。红外和自发拉曼光谱检测宿主基质中的分子振动或成分变化,捕获直接或间接的霉菌毒素指纹图谱,而表面增强拉曼光谱(SERs)通过等离子体纳米结构放大特征霉菌毒素分子振动,实现超灵敏检测。机器学习通过从信息丰富的光谱中提取细微和独特的霉菌毒素光谱特征,抑制噪声,并实现跨异质样本的稳健预测,进一步增强了分析能力。这篇综述对最近的传感策略、模型开发、应用性能、非破坏性筛选和潜在的应用挑战进行了批判性的研究,突出了与传统方法相比的优势和局限性。还讨论了集成云计算的便携式小型化光谱仪的创新,支持可扩展、快速和现场真菌毒素监测。通过将最先进的振动指纹与计算分析相结合,这些方法为敏感、智能和可现场部署的食品霉菌毒素检测提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward smart and in-situ mycotoxin detection in food via vibrational spectroscopy and machine learning
Recent advances in vibrational spectroscopy combined with machine learning are enabling smart and in-situ detection of mycotoxins in complex food matrices. Infrared and spontaneous Raman spectroscopy detect molecular vibrations or compositional changes in host matrices, capturing direct or indirect mycotoxin fingerprints, while surface-enhanced Raman spectroscopy (SERs) amplifies characteristic mycotoxins molecular vibrations via plasmonic nanostructures, enabling ultra-sensitive detection. Machine learning further enhances analysis by extracting subtle and unique mycotoxin spectral features from information-rich spectra, suppressing noise, and enabling robust predictions across heterogeneous samples. This review critically examines recent sensing strategies, model development, application performance, non-destructive screening, and potential application challenges, highlighting strengths and limitations relative to conventional methods. Innovations in portable, miniaturized spectrometers integrated with cloud computation are also discussed, supporting scalable, rapid, and on-site mycotoxin monitoring. By integrating state-of-art vibrational fingerprints with computational analysis, these approaches provide a pathway toward sensitive, smart, and field-deployable mycotoxin detection in food.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry: X
Food Chemistry: X CHEMISTRY, APPLIED-
CiteScore
4.90
自引率
6.60%
发文量
315
审稿时长
55 days
期刊介绍: Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信