{"title":"3d培养腭间充质干细胞及其分泌因子对白色念珠菌的抑菌作用。","authors":"Mesude Bicer, Esengül Öztürk, Fatma Sener, Sema S Hakki, Özkan Fidan","doi":"10.1021/acsinfecdis.5c00657","DOIUrl":null,"url":null,"abstract":"<p><p><i>Candida albicans</i> is among the life-threatening fungal species and the primary contributor to hospital-acquired systemic infections, accounting for nearly 70% of all fungal infections worldwide. The current treatment primarily relies on azoles, pyrimidine analogs, polyenes, and echinocandins. However, growing antifungal resistance highlights the urgent need for the development of alternative treatments against <i>C. albicans</i>. Mesenchymal stem cells (MSCs) offer huge therapeutic potential for the treatment of <i>C. albicans</i>-associated diseases. In this study, palatal adipose tissue-derived MSCs (PAT-MSCs) and PAT-MSCs cultured in 3D biomaterial using nanofibrillar cellulose were tested against <i>C. albicans</i> strains ATCC 10231 and ATCC MYA 2876 using an <i>in vitro</i> antifungal activity assay. In addition, the conditioned medium from both PAT-MSCs and PAT-MSCs cultured in 3D hydrogel biomaterial (CM-PAT-MSCs-3D) were evaluated for their antifungal activities. The combined effect of PAT-MSCs and their secreted factors was also investigated. The expression of five antimicrobial peptide (AMP)-encoding genes was analyzed by quantitative real-time PCR. The expression of antimicrobial peptides was further confirmed via immunocytochemical staining. PAT-MSCs significantly inhibited the growth of <i>C. albicans</i> strains at varying inoculum concentrations (500 and 2000 CFU). Similarly, a comparable antifungal effect was observed when <i>Candida</i> strains were treated with PAT-MSC secreted factors alone. Statistical analysis revealed significant differences between the antifungal activities of PAT-MSCs and CM-PAT-MSCs. Lastly, the combination of PAT-MSCs and CM-PAT-MSC-3D led to a marked reduction in fungal growth, with inhibition rates of 99.75% and 99.91% for <i>C. albicans</i> ATCC 10231 and ATCC MYA-2876, respectively, at 500 CFU inocula. At 2000 CFU inocula, inhibition rates were 99.54% and 99.91%, respectively (****<i>P</i> ≤ 0.0001). These antifungal activities were further confirmed by using RT-PCR and immunocytochemical analysis. Our findings underscore a perspective on the potent antifungal activity of secreted factors from PAT-MSCs cultured within a 3D hydrogel matrix, specifically against various strains of <i>C. albicans</i>. Particularly, the combination of PAT-MSCs with their secreted factors represents a promising therapeutic platform, potentially offering a safer and more effective alternative to conventional antifungal treatments.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antifungal Efficacy of 3D-Cultured Palatal Mesenchymal Stem Cells and Their Secreted Factors against <i>Candida albicans</i>.\",\"authors\":\"Mesude Bicer, Esengül Öztürk, Fatma Sener, Sema S Hakki, Özkan Fidan\",\"doi\":\"10.1021/acsinfecdis.5c00657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Candida albicans</i> is among the life-threatening fungal species and the primary contributor to hospital-acquired systemic infections, accounting for nearly 70% of all fungal infections worldwide. The current treatment primarily relies on azoles, pyrimidine analogs, polyenes, and echinocandins. However, growing antifungal resistance highlights the urgent need for the development of alternative treatments against <i>C. albicans</i>. Mesenchymal stem cells (MSCs) offer huge therapeutic potential for the treatment of <i>C. albicans</i>-associated diseases. In this study, palatal adipose tissue-derived MSCs (PAT-MSCs) and PAT-MSCs cultured in 3D biomaterial using nanofibrillar cellulose were tested against <i>C. albicans</i> strains ATCC 10231 and ATCC MYA 2876 using an <i>in vitro</i> antifungal activity assay. In addition, the conditioned medium from both PAT-MSCs and PAT-MSCs cultured in 3D hydrogel biomaterial (CM-PAT-MSCs-3D) were evaluated for their antifungal activities. The combined effect of PAT-MSCs and their secreted factors was also investigated. The expression of five antimicrobial peptide (AMP)-encoding genes was analyzed by quantitative real-time PCR. The expression of antimicrobial peptides was further confirmed via immunocytochemical staining. PAT-MSCs significantly inhibited the growth of <i>C. albicans</i> strains at varying inoculum concentrations (500 and 2000 CFU). Similarly, a comparable antifungal effect was observed when <i>Candida</i> strains were treated with PAT-MSC secreted factors alone. Statistical analysis revealed significant differences between the antifungal activities of PAT-MSCs and CM-PAT-MSCs. Lastly, the combination of PAT-MSCs and CM-PAT-MSC-3D led to a marked reduction in fungal growth, with inhibition rates of 99.75% and 99.91% for <i>C. albicans</i> ATCC 10231 and ATCC MYA-2876, respectively, at 500 CFU inocula. At 2000 CFU inocula, inhibition rates were 99.54% and 99.91%, respectively (****<i>P</i> ≤ 0.0001). These antifungal activities were further confirmed by using RT-PCR and immunocytochemical analysis. Our findings underscore a perspective on the potent antifungal activity of secreted factors from PAT-MSCs cultured within a 3D hydrogel matrix, specifically against various strains of <i>C. albicans</i>. Particularly, the combination of PAT-MSCs with their secreted factors represents a promising therapeutic platform, potentially offering a safer and more effective alternative to conventional antifungal treatments.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.5c00657\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.5c00657","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Antifungal Efficacy of 3D-Cultured Palatal Mesenchymal Stem Cells and Their Secreted Factors against Candida albicans.
Candida albicans is among the life-threatening fungal species and the primary contributor to hospital-acquired systemic infections, accounting for nearly 70% of all fungal infections worldwide. The current treatment primarily relies on azoles, pyrimidine analogs, polyenes, and echinocandins. However, growing antifungal resistance highlights the urgent need for the development of alternative treatments against C. albicans. Mesenchymal stem cells (MSCs) offer huge therapeutic potential for the treatment of C. albicans-associated diseases. In this study, palatal adipose tissue-derived MSCs (PAT-MSCs) and PAT-MSCs cultured in 3D biomaterial using nanofibrillar cellulose were tested against C. albicans strains ATCC 10231 and ATCC MYA 2876 using an in vitro antifungal activity assay. In addition, the conditioned medium from both PAT-MSCs and PAT-MSCs cultured in 3D hydrogel biomaterial (CM-PAT-MSCs-3D) were evaluated for their antifungal activities. The combined effect of PAT-MSCs and their secreted factors was also investigated. The expression of five antimicrobial peptide (AMP)-encoding genes was analyzed by quantitative real-time PCR. The expression of antimicrobial peptides was further confirmed via immunocytochemical staining. PAT-MSCs significantly inhibited the growth of C. albicans strains at varying inoculum concentrations (500 and 2000 CFU). Similarly, a comparable antifungal effect was observed when Candida strains were treated with PAT-MSC secreted factors alone. Statistical analysis revealed significant differences between the antifungal activities of PAT-MSCs and CM-PAT-MSCs. Lastly, the combination of PAT-MSCs and CM-PAT-MSC-3D led to a marked reduction in fungal growth, with inhibition rates of 99.75% and 99.91% for C. albicans ATCC 10231 and ATCC MYA-2876, respectively, at 500 CFU inocula. At 2000 CFU inocula, inhibition rates were 99.54% and 99.91%, respectively (****P ≤ 0.0001). These antifungal activities were further confirmed by using RT-PCR and immunocytochemical analysis. Our findings underscore a perspective on the potent antifungal activity of secreted factors from PAT-MSCs cultured within a 3D hydrogel matrix, specifically against various strains of C. albicans. Particularly, the combination of PAT-MSCs with their secreted factors represents a promising therapeutic platform, potentially offering a safer and more effective alternative to conventional antifungal treatments.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.