电子交换介导的核自旋可伸缩纠缠

IF 45.8 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Pub Date : 2025-09-18 DOI:10.1126/science.ady3799
Holly G. Stemp, Mark R. van Blankenstein, Serwan Asaad, Mateusz T. Mądzik, Benjamin Joecker, Hannes R. Firgau, Arne Laucht, Fay E. Hudson, Andrew S. Dzurak, Kohei M. Itoh, Alexander M. Jakob, Brett C. Johnson, David N. Jamieson, Andrea Morello
{"title":"电子交换介导的核自旋可伸缩纠缠","authors":"Holly G. Stemp,&nbsp;Mark R. van Blankenstein,&nbsp;Serwan Asaad,&nbsp;Mateusz T. Mądzik,&nbsp;Benjamin Joecker,&nbsp;Hannes R. Firgau,&nbsp;Arne Laucht,&nbsp;Fay E. Hudson,&nbsp;Andrew S. Dzurak,&nbsp;Kohei M. Itoh,&nbsp;Alexander M. Jakob,&nbsp;Brett C. Johnson,&nbsp;David N. Jamieson,&nbsp;Andrea Morello","doi":"10.1126/science.ady3799","DOIUrl":null,"url":null,"abstract":"<div >The use of nuclear spins for quantum computation is limited by the difficulty in creating genuine quantum entanglement between distant nuclei. Current demonstrations of nuclear entanglement in semiconductors rely on coupling the nuclei to a common electron, which is not a scalable strategy. In this work, we demonstrated a two-qubit controlled-Z logic operation between the nuclei of two phosphorus atoms in a silicon device, separated by up to 20 nanometers. Each atom binds separate electrons, whose exchange interaction mediates the nuclear two-qubit gate. We prepared and measured a nuclear Bell state with a fidelity of <span><math><mrow><msubsup><mrow><mn>76</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msubsup><mi>%</mi></mrow></math></span> and a concurrence of <span><math><mrow><msubsup><mrow><mn>0.67</mn></mrow><mrow><mo>−</mo><mn>0.05</mn></mrow><mrow><mo>+</mo><mn>0.05</mn></mrow></msubsup></mrow></math></span>. With this method, future progress in scaling up semiconductor spin qubits can be extended to the development of nuclear spin–based quantum computers.</div>","PeriodicalId":21678,"journal":{"name":"Science","volume":"389 6766","pages":""},"PeriodicalIF":45.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable entanglement of nuclear spins mediated by electron exchange\",\"authors\":\"Holly G. Stemp,&nbsp;Mark R. van Blankenstein,&nbsp;Serwan Asaad,&nbsp;Mateusz T. Mądzik,&nbsp;Benjamin Joecker,&nbsp;Hannes R. Firgau,&nbsp;Arne Laucht,&nbsp;Fay E. Hudson,&nbsp;Andrew S. Dzurak,&nbsp;Kohei M. Itoh,&nbsp;Alexander M. Jakob,&nbsp;Brett C. Johnson,&nbsp;David N. Jamieson,&nbsp;Andrea Morello\",\"doi\":\"10.1126/science.ady3799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >The use of nuclear spins for quantum computation is limited by the difficulty in creating genuine quantum entanglement between distant nuclei. Current demonstrations of nuclear entanglement in semiconductors rely on coupling the nuclei to a common electron, which is not a scalable strategy. In this work, we demonstrated a two-qubit controlled-Z logic operation between the nuclei of two phosphorus atoms in a silicon device, separated by up to 20 nanometers. Each atom binds separate electrons, whose exchange interaction mediates the nuclear two-qubit gate. We prepared and measured a nuclear Bell state with a fidelity of <span><math><mrow><msubsup><mrow><mn>76</mn></mrow><mrow><mo>−</mo><mn>5</mn></mrow><mrow><mo>+</mo><mn>5</mn></mrow></msubsup><mi>%</mi></mrow></math></span> and a concurrence of <span><math><mrow><msubsup><mrow><mn>0.67</mn></mrow><mrow><mo>−</mo><mn>0.05</mn></mrow><mrow><mo>+</mo><mn>0.05</mn></mrow></msubsup></mrow></math></span>. With this method, future progress in scaling up semiconductor spin qubits can be extended to the development of nuclear spin–based quantum computers.</div>\",\"PeriodicalId\":21678,\"journal\":{\"name\":\"Science\",\"volume\":\"389 6766\",\"pages\":\"\"},\"PeriodicalIF\":45.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/science.ady3799\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/science.ady3799","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

核自旋在量子计算中的应用受到在遥远原子核之间产生真正的量子纠缠的困难的限制。目前半导体中的核纠缠依赖于原子核与普通电子的耦合,这不是一个可扩展的策略。在这项工作中,我们展示了在硅器件中两个磷原子原子核之间的两个量子位控制的z逻辑操作,相隔高达20纳米。每个原子结合单独的电子,其交换相互作用介导核双量子位门。我们制备并测量了一个保真度为76−5 + 5%,并发度为0.67−0.05 + 0.05的核贝尔态。通过这种方法,未来扩大半导体自旋量子比特的进展可以扩展到基于核自旋的量子计算机的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable entanglement of nuclear spins mediated by electron exchange
The use of nuclear spins for quantum computation is limited by the difficulty in creating genuine quantum entanglement between distant nuclei. Current demonstrations of nuclear entanglement in semiconductors rely on coupling the nuclei to a common electron, which is not a scalable strategy. In this work, we demonstrated a two-qubit controlled-Z logic operation between the nuclei of two phosphorus atoms in a silicon device, separated by up to 20 nanometers. Each atom binds separate electrons, whose exchange interaction mediates the nuclear two-qubit gate. We prepared and measured a nuclear Bell state with a fidelity of 765+5% and a concurrence of 0.670.05+0.05. With this method, future progress in scaling up semiconductor spin qubits can be extended to the development of nuclear spin–based quantum computers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science
Science 综合性期刊-综合性期刊
CiteScore
61.10
自引率
0.90%
发文量
0
审稿时长
2.1 months
期刊介绍: Science is a leading outlet for scientific news, commentary, and cutting-edge research. Through its print and online incarnations, Science reaches an estimated worldwide readership of more than one million. Science’s authorship is global too, and its articles consistently rank among the world's most cited research. Science serves as a forum for discussion of important issues related to the advancement of science by publishing material on which a consensus has been reached as well as including the presentation of minority or conflicting points of view. Accordingly, all articles published in Science—including editorials, news and comment, and book reviews—are signed and reflect the individual views of the authors and not official points of view adopted by AAAS or the institutions with which the authors are affiliated. Science seeks to publish those papers that are most influential in their fields or across fields and that will significantly advance scientific understanding. Selected papers should present novel and broadly important data, syntheses, or concepts. They should merit recognition by the wider scientific community and general public provided by publication in Science, beyond that provided by specialty journals. Science welcomes submissions from all fields of science and from any source. The editors are committed to the prompt evaluation and publication of submitted papers while upholding high standards that support reproducibility of published research. Science is published weekly; selected papers are published online ahead of print.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信