动力学控制合成核桃核壳磁性介孔二氧化硅微球以增强酶负载和生物催化性能。

IF 6.2 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhonglin He, , , Yuqi Fan, , , Rongju Zhou, , , Baozhu Zhao, , , Xingxing Ding, , , Jin Mao, , and , Jie Shi*, 
{"title":"动力学控制合成核桃核壳磁性介孔二氧化硅微球以增强酶负载和生物催化性能。","authors":"Zhonglin He,&nbsp;, ,&nbsp;Yuqi Fan,&nbsp;, ,&nbsp;Rongju Zhou,&nbsp;, ,&nbsp;Baozhu Zhao,&nbsp;, ,&nbsp;Xingxing Ding,&nbsp;, ,&nbsp;Jin Mao,&nbsp;, and ,&nbsp;Jie Shi*,&nbsp;","doi":"10.1021/acs.jafc.5c04550","DOIUrl":null,"url":null,"abstract":"<p >Magnetic mesoporous materials, integrating magnetic nanoparticles and mesoporous structures, have great potential in biomedicine, catalysis, and the environment. This study develops a novel core–shell nanocarrier (CS-WMM: magnetic core-flower-like MnO<sub>2</sub> mesoporous layer-silica shell) for efficient lipase immobilization and enhanced phytosterol esters synthesis. Via a surfactant-free kinetic-controlled interfacial assembly, walnut-like dual-mesoporous microspheres (inner flower-like MnO<sub>2</sub>, outer mesoporous SiO<sub>2</sub>: 4.8 nm pore, 158.61 m<sup>2</sup>/g surface) are constructed, enabling a high enzyme loading (210 mg g<sup>–</sup><sup>1</sup>) and improved substrate diffusion. Compared with Fe<sub>3</sub>O<sub>4</sub>@MnO<sub>2</sub>, CS-WMM achieves 78.33% esterification conversion and retains 55.03% activity after 7 cycles via dual-mesoporous synergy. This work provides a novel material design strategy with high loading capacity and structural stability for hydrophobic substrate-driven biocatalytic systems, which holds potential applications in food lipid processing, biopharmaceuticals, and other fields.</p>","PeriodicalId":41,"journal":{"name":"Journal of Agricultural and Food Chemistry","volume":"73 39","pages":"24816–24829"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetic-Controlled Synthesis of Walnut-like Core–Shell Magnetic Mesoporous Silica Microspheres for Enhanced Enzyme Loading and Biocatalytic Performance\",\"authors\":\"Zhonglin He,&nbsp;, ,&nbsp;Yuqi Fan,&nbsp;, ,&nbsp;Rongju Zhou,&nbsp;, ,&nbsp;Baozhu Zhao,&nbsp;, ,&nbsp;Xingxing Ding,&nbsp;, ,&nbsp;Jin Mao,&nbsp;, and ,&nbsp;Jie Shi*,&nbsp;\",\"doi\":\"10.1021/acs.jafc.5c04550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Magnetic mesoporous materials, integrating magnetic nanoparticles and mesoporous structures, have great potential in biomedicine, catalysis, and the environment. This study develops a novel core–shell nanocarrier (CS-WMM: magnetic core-flower-like MnO<sub>2</sub> mesoporous layer-silica shell) for efficient lipase immobilization and enhanced phytosterol esters synthesis. Via a surfactant-free kinetic-controlled interfacial assembly, walnut-like dual-mesoporous microspheres (inner flower-like MnO<sub>2</sub>, outer mesoporous SiO<sub>2</sub>: 4.8 nm pore, 158.61 m<sup>2</sup>/g surface) are constructed, enabling a high enzyme loading (210 mg g<sup>–</sup><sup>1</sup>) and improved substrate diffusion. Compared with Fe<sub>3</sub>O<sub>4</sub>@MnO<sub>2</sub>, CS-WMM achieves 78.33% esterification conversion and retains 55.03% activity after 7 cycles via dual-mesoporous synergy. This work provides a novel material design strategy with high loading capacity and structural stability for hydrophobic substrate-driven biocatalytic systems, which holds potential applications in food lipid processing, biopharmaceuticals, and other fields.</p>\",\"PeriodicalId\":41,\"journal\":{\"name\":\"Journal of Agricultural and Food Chemistry\",\"volume\":\"73 39\",\"pages\":\"24816–24829\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural and Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jafc.5c04550\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural and Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jafc.5c04550","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

磁性介孔材料是一种集磁性纳米颗粒和介孔结构于一体的材料,在生物医学、催化和环境等领域具有巨大的应用潜力。本研究开发了一种新型的核-壳纳米载体(CS-WMM:磁性核-花状二氧化锰介孔层-二氧化硅壳),用于高效固定化脂肪酶和促进植物甾醇酯合成。通过无表面活性剂的动力学控制界面组装,构建了核桃状双介孔微球(内层为花状MnO2,外层为介孔SiO2: 4.8 nm孔径,158.61 m2/g表面积),实现了高酶载量(210 mg g-1)和改善底物扩散。与Fe3O4@MnO2相比,CS-WMM通过双介孔协同作用,7次循环后酯化转化率达到78.33%,活性保持55.03%。本研究为疏水底物驱动的生物催化系统提供了一种具有高负载能力和结构稳定性的新型材料设计策略,在食品脂质加工、生物制药等领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kinetic-Controlled Synthesis of Walnut-like Core–Shell Magnetic Mesoporous Silica Microspheres for Enhanced Enzyme Loading and Biocatalytic Performance

Kinetic-Controlled Synthesis of Walnut-like Core–Shell Magnetic Mesoporous Silica Microspheres for Enhanced Enzyme Loading and Biocatalytic Performance

Magnetic mesoporous materials, integrating magnetic nanoparticles and mesoporous structures, have great potential in biomedicine, catalysis, and the environment. This study develops a novel core–shell nanocarrier (CS-WMM: magnetic core-flower-like MnO2 mesoporous layer-silica shell) for efficient lipase immobilization and enhanced phytosterol esters synthesis. Via a surfactant-free kinetic-controlled interfacial assembly, walnut-like dual-mesoporous microspheres (inner flower-like MnO2, outer mesoporous SiO2: 4.8 nm pore, 158.61 m2/g surface) are constructed, enabling a high enzyme loading (210 mg g1) and improved substrate diffusion. Compared with Fe3O4@MnO2, CS-WMM achieves 78.33% esterification conversion and retains 55.03% activity after 7 cycles via dual-mesoporous synergy. This work provides a novel material design strategy with high loading capacity and structural stability for hydrophobic substrate-driven biocatalytic systems, which holds potential applications in food lipid processing, biopharmaceuticals, and other fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural and Food Chemistry
Journal of Agricultural and Food Chemistry 农林科学-农业综合
CiteScore
9.90
自引率
8.20%
发文量
1375
审稿时长
2.3 months
期刊介绍: The Journal of Agricultural and Food Chemistry publishes high-quality, cutting edge original research representing complete studies and research advances dealing with the chemistry and biochemistry of agriculture and food. The Journal also encourages papers with chemistry and/or biochemistry as a major component combined with biological/sensory/nutritional/toxicological evaluation related to agriculture and/or food.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信