用单波辅助合成法在取代异黄酮的c3位上组装苯基取代卤素:一类新的单胺氧化酶抑制剂的研制

IF 3.1 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Della Grace Thomas Parambi, Stephanus J. Cloete, Sunil Kumar, Tariq Ghazi Alsahli, Arafa Musa, Sumera Qasim, Muzammil Kabier, Sachithra Thazhathuveedu Sudevan, Saranya Kattil Parmbil, Anél Petzer, Jacobus P. Petzer, Bijo Mathew
{"title":"用单波辅助合成法在取代异黄酮的c3位上组装苯基取代卤素:一类新的单胺氧化酶抑制剂的研制","authors":"Della Grace Thomas Parambi,&nbsp;Stephanus J. Cloete,&nbsp;Sunil Kumar,&nbsp;Tariq Ghazi Alsahli,&nbsp;Arafa Musa,&nbsp;Sumera Qasim,&nbsp;Muzammil Kabier,&nbsp;Sachithra Thazhathuveedu Sudevan,&nbsp;Saranya Kattil Parmbil,&nbsp;Anél Petzer,&nbsp;Jacobus P. Petzer,&nbsp;Bijo Mathew","doi":"10.1007/s10822-025-00663-8","DOIUrl":null,"url":null,"abstract":"<div><p>A series of ten chloro- and bromo-substituted isatin derivatives were synthesized and evaluated for their ability to inhibit the monoamine oxidase (MAO) enzymes. All compounds demonstrated more potent inhibition of MAO-A compared to MAO-B. The most potent MAO-A inhibitor was <b>HIB2</b> (IC<sub>50</sub> = 0.037 μM), followed by <b>HIB4</b> (IC<sub>50</sub> = 0.039 μM), while <b>HIB10</b> (IC<sub>50</sub> = 0.125 μM) exhibited the most potent inhibition of MAO-B. <b>HIB2</b> was identified as a specific MAO inhibitor with a selectivity index of 29 for MAO-A over MAO-B. The enzyme-inhibitor dissociation constants (K<sub>i</sub>) for <b>HIB2</b> and <b>HIB10</b> were 0.031 μM and 0.036 μM, respectively, for MAO-A and MAO-B. Both <b>HIB2</b> and <b>HIB10</b> exhibited competitive and reversible inhibition. An analysis of the ADMET and PAMPA suggested that <b>HIB2</b> is permeable to the blood–brain barrier (BBB). Molecular docking analysis revealed that <b>HIB2</b> forms stable hydrogen bonds with Asn181 and Gln215 in the MAO-A ligand–protein complex. Dynamic analysis indicated the stability of <b>HIB2</b> with MAO-A. These findings suggest that <b>HIB2</b> is potent reversible MAO-A inhibitor, making this class of compounds potential therapeutic agents for neurological disorders.</p></div>","PeriodicalId":621,"journal":{"name":"Journal of Computer-Aided Molecular Design","volume":"39 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assembling of phenyl substituted halogens in the C3-position of substituted isatins by mono wave assisted synthesis: development of a new class of monoamine oxidase inhibitors\",\"authors\":\"Della Grace Thomas Parambi,&nbsp;Stephanus J. Cloete,&nbsp;Sunil Kumar,&nbsp;Tariq Ghazi Alsahli,&nbsp;Arafa Musa,&nbsp;Sumera Qasim,&nbsp;Muzammil Kabier,&nbsp;Sachithra Thazhathuveedu Sudevan,&nbsp;Saranya Kattil Parmbil,&nbsp;Anél Petzer,&nbsp;Jacobus P. Petzer,&nbsp;Bijo Mathew\",\"doi\":\"10.1007/s10822-025-00663-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A series of ten chloro- and bromo-substituted isatin derivatives were synthesized and evaluated for their ability to inhibit the monoamine oxidase (MAO) enzymes. All compounds demonstrated more potent inhibition of MAO-A compared to MAO-B. The most potent MAO-A inhibitor was <b>HIB2</b> (IC<sub>50</sub> = 0.037 μM), followed by <b>HIB4</b> (IC<sub>50</sub> = 0.039 μM), while <b>HIB10</b> (IC<sub>50</sub> = 0.125 μM) exhibited the most potent inhibition of MAO-B. <b>HIB2</b> was identified as a specific MAO inhibitor with a selectivity index of 29 for MAO-A over MAO-B. The enzyme-inhibitor dissociation constants (K<sub>i</sub>) for <b>HIB2</b> and <b>HIB10</b> were 0.031 μM and 0.036 μM, respectively, for MAO-A and MAO-B. Both <b>HIB2</b> and <b>HIB10</b> exhibited competitive and reversible inhibition. An analysis of the ADMET and PAMPA suggested that <b>HIB2</b> is permeable to the blood–brain barrier (BBB). Molecular docking analysis revealed that <b>HIB2</b> forms stable hydrogen bonds with Asn181 and Gln215 in the MAO-A ligand–protein complex. Dynamic analysis indicated the stability of <b>HIB2</b> with MAO-A. These findings suggest that <b>HIB2</b> is potent reversible MAO-A inhibitor, making this class of compounds potential therapeutic agents for neurological disorders.</p></div>\",\"PeriodicalId\":621,\"journal\":{\"name\":\"Journal of Computer-Aided Molecular Design\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer-Aided Molecular Design\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10822-025-00663-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer-Aided Molecular Design","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10822-025-00663-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

合成了一系列10个氯代和溴代异丁素衍生物,并对其抑制单胺氧化酶(MAO)的能力进行了评价。与MAO-B相比,所有化合物对MAO-A的抑制作用更强。对MAO-A抑制作用最强的是HIB2 (IC50 = 0.037 μM),其次是HIB4 (IC50 = 0.039 μM), HIB10 (IC50 = 0.125 μM)对MAO-B的抑制作用最强。HIB2是一种特异性MAO抑制剂,对MAO- a的选择性指数为29。酶抑制剂HIB2和HIB10的解离常数(Ki)分别为0.031 μM和0.036 μM。HIB2和HIB10均表现出竞争性和可逆性抑制。ADMET和PAMPA分析表明HIB2可渗透血脑屏障(BBB)。分子对接分析表明,HIB2在MAO-A配体-蛋白复合物中与Asn181和Gln215形成稳定的氢键。动态分析表明,在MAO-A的作用下,HIB2具有一定的稳定性。这些发现表明HIB2是有效的可逆性MAO-A抑制剂,使这类化合物成为神经系统疾病的潜在治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assembling of phenyl substituted halogens in the C3-position of substituted isatins by mono wave assisted synthesis: development of a new class of monoamine oxidase inhibitors

A series of ten chloro- and bromo-substituted isatin derivatives were synthesized and evaluated for their ability to inhibit the monoamine oxidase (MAO) enzymes. All compounds demonstrated more potent inhibition of MAO-A compared to MAO-B. The most potent MAO-A inhibitor was HIB2 (IC50 = 0.037 μM), followed by HIB4 (IC50 = 0.039 μM), while HIB10 (IC50 = 0.125 μM) exhibited the most potent inhibition of MAO-B. HIB2 was identified as a specific MAO inhibitor with a selectivity index of 29 for MAO-A over MAO-B. The enzyme-inhibitor dissociation constants (Ki) for HIB2 and HIB10 were 0.031 μM and 0.036 μM, respectively, for MAO-A and MAO-B. Both HIB2 and HIB10 exhibited competitive and reversible inhibition. An analysis of the ADMET and PAMPA suggested that HIB2 is permeable to the blood–brain barrier (BBB). Molecular docking analysis revealed that HIB2 forms stable hydrogen bonds with Asn181 and Gln215 in the MAO-A ligand–protein complex. Dynamic analysis indicated the stability of HIB2 with MAO-A. These findings suggest that HIB2 is potent reversible MAO-A inhibitor, making this class of compounds potential therapeutic agents for neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computer-Aided Molecular Design
Journal of Computer-Aided Molecular Design 生物-计算机:跨学科应用
CiteScore
8.00
自引率
8.60%
发文量
56
审稿时长
3 months
期刊介绍: The Journal of Computer-Aided Molecular Design provides a form for disseminating information on both the theory and the application of computer-based methods in the analysis and design of molecules. The scope of the journal encompasses papers which report new and original research and applications in the following areas: - theoretical chemistry; - computational chemistry; - computer and molecular graphics; - molecular modeling; - protein engineering; - drug design; - expert systems; - general structure-property relationships; - molecular dynamics; - chemical database development and usage.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信