揭示H2O2在MgFe2O4/CNT复合材料中的双途径活化,以增强电催化降解苯酚

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yonghao Wang, Liting Ling, Zhenghao Lu, Ming Zhou, Xiaomei Zheng and Yongjing Wang
{"title":"揭示H2O2在MgFe2O4/CNT复合材料中的双途径活化,以增强电催化降解苯酚","authors":"Yonghao Wang, Liting Ling, Zhenghao Lu, Ming Zhou, Xiaomei Zheng and Yongjing Wang","doi":"10.1039/D5TC01649E","DOIUrl":null,"url":null,"abstract":"<p >Spinel-structured materials are considered promising electrocatalysts for environmental remediation, yet their mechanisms in the electrocatalytic reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O<small><sub>2</sub></small> and the activation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> remain poorly understood. Herein, we synthesized a novel MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/carbon nanotube (CNT) composite <em>via</em> a hydrothermal method and systemically investigated its electrocatalytic performance in the degradation of phenol through the <em>in situ</em> electrocatalytic-reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O<small><sub>2</sub></small> and activation to ˙OH. The composite exhibited exceptional catalytic activity, achieving 99% phenol degradation within 30 minutes under optimized conditions (MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT mass ratio of 10 : 1, applied voltage of −0.9 V, pH 3, and catalyst loading of 0.44 mg cm<small><sup>−2</sup></small>). Moreover, the total organic carbon (TOC) reached 78.6% in 90 minutes, with the catalyst maintaining 91.4% efficiency after four recycling experiments. Mechanistic studies using XPS and control experiments indicate that introducing CNTs considerably improves electron transfer and enriches active oxygen and defect degrees. Importantly, abundant defects and active oxygen species facilitate the generation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> and dominate the conversion of H<small><sub>2</sub></small>O<small><sub>2</sub></small> into ˙OH by heterogeneous activation for MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT, while MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small> mainly depends on homogeneous activation. This work offers a significant case for the degradation of organic contaminants utilizing spinel-structured electrocatalysts.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 36","pages":" 18702-18711"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling dual-pathway H2O2 activation in a MgFe2O4/CNT composite for enhanced electrocatalytic degradation of phenol\",\"authors\":\"Yonghao Wang, Liting Ling, Zhenghao Lu, Ming Zhou, Xiaomei Zheng and Yongjing Wang\",\"doi\":\"10.1039/D5TC01649E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Spinel-structured materials are considered promising electrocatalysts for environmental remediation, yet their mechanisms in the electrocatalytic reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O<small><sub>2</sub></small> and the activation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> remain poorly understood. Herein, we synthesized a novel MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/carbon nanotube (CNT) composite <em>via</em> a hydrothermal method and systemically investigated its electrocatalytic performance in the degradation of phenol through the <em>in situ</em> electrocatalytic-reduction of O<small><sub>2</sub></small> to H<small><sub>2</sub></small>O<small><sub>2</sub></small> and activation to ˙OH. The composite exhibited exceptional catalytic activity, achieving 99% phenol degradation within 30 minutes under optimized conditions (MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT mass ratio of 10 : 1, applied voltage of −0.9 V, pH 3, and catalyst loading of 0.44 mg cm<small><sup>−2</sup></small>). Moreover, the total organic carbon (TOC) reached 78.6% in 90 minutes, with the catalyst maintaining 91.4% efficiency after four recycling experiments. Mechanistic studies using XPS and control experiments indicate that introducing CNTs considerably improves electron transfer and enriches active oxygen and defect degrees. Importantly, abundant defects and active oxygen species facilitate the generation of H<small><sub>2</sub></small>O<small><sub>2</sub></small> and dominate the conversion of H<small><sub>2</sub></small>O<small><sub>2</sub></small> into ˙OH by heterogeneous activation for MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CNT, while MgFe<small><sub>2</sub></small>O<small><sub>4</sub></small> mainly depends on homogeneous activation. This work offers a significant case for the degradation of organic contaminants utilizing spinel-structured electrocatalysts.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 36\",\"pages\":\" 18702-18711\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01649e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01649e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尖晶石结构材料被认为是很有前途的环境修复电催化剂,但其电催化还原O2为H2O2和活化H2O2的机制尚不清楚。本文采用水热法合成了一种新型的MgFe2O4/碳纳米管(CNT)复合材料,并通过原位电催化将O2还原为H2O2并活化为˙OH,系统地研究了其降解苯酚的电催化性能。该复合材料表现出优异的催化活性,在优化条件下(MgFe2O4/CNT质量比为10:1,施加电压为−0.9 V, pH为3,催化剂负载为0.44 mg cm−2),30分钟内实现99%的苯酚降解。在90分钟内,总有机碳(TOC)达到78.6%,经过4次循环实验,催化剂的效率保持在91.4%。XPS和对照实验的机理研究表明,碳纳米管的引入大大改善了电子传递,丰富了活性氧和缺陷度。重要的是,丰富的缺陷和活性氧促进了H2O2的生成,并主导了MgFe2O4/CNT通过非均相活化将H2O2转化为˙OH,而MgFe2O4主要依靠均相活化。这项工作为利用尖晶石结构的电催化剂降解有机污染物提供了一个重要的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling dual-pathway H2O2 activation in a MgFe2O4/CNT composite for enhanced electrocatalytic degradation of phenol

Unveiling dual-pathway H2O2 activation in a MgFe2O4/CNT composite for enhanced electrocatalytic degradation of phenol

Spinel-structured materials are considered promising electrocatalysts for environmental remediation, yet their mechanisms in the electrocatalytic reduction of O2 to H2O2 and the activation of H2O2 remain poorly understood. Herein, we synthesized a novel MgFe2O4/carbon nanotube (CNT) composite via a hydrothermal method and systemically investigated its electrocatalytic performance in the degradation of phenol through the in situ electrocatalytic-reduction of O2 to H2O2 and activation to ˙OH. The composite exhibited exceptional catalytic activity, achieving 99% phenol degradation within 30 minutes under optimized conditions (MgFe2O4/CNT mass ratio of 10 : 1, applied voltage of −0.9 V, pH 3, and catalyst loading of 0.44 mg cm−2). Moreover, the total organic carbon (TOC) reached 78.6% in 90 minutes, with the catalyst maintaining 91.4% efficiency after four recycling experiments. Mechanistic studies using XPS and control experiments indicate that introducing CNTs considerably improves electron transfer and enriches active oxygen and defect degrees. Importantly, abundant defects and active oxygen species facilitate the generation of H2O2 and dominate the conversion of H2O2 into ˙OH by heterogeneous activation for MgFe2O4/CNT, while MgFe2O4 mainly depends on homogeneous activation. This work offers a significant case for the degradation of organic contaminants utilizing spinel-structured electrocatalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信