Xi Luo , Li Zhang , Srilatha Sakamuru , Precious A. Adesina , Jinghua Zhao , Menghang Xia , Tuan Xu , Deborah K. Ngan , Jameson Travers , Savannah Wood , Ray Sukhawanit , Anthony Garrison , Carleen Klumpp-Thomas , Stephen S. Ferguson , Hu Zhu , Matthew D. Hall , David M. Reif , Ruili Huang
{"title":"针对β-肾上腺素能受体的Tox21化合物的系统评价及其在心脏毒性中的作用。","authors":"Xi Luo , Li Zhang , Srilatha Sakamuru , Precious A. Adesina , Jinghua Zhao , Menghang Xia , Tuan Xu , Deborah K. Ngan , Jameson Travers , Savannah Wood , Ray Sukhawanit , Anthony Garrison , Carleen Klumpp-Thomas , Stephen S. Ferguson , Hu Zhu , Matthew D. Hall , David M. Reif , Ruili Huang","doi":"10.1016/j.taap.2025.117567","DOIUrl":null,"url":null,"abstract":"<div><div>β-adrenergic receptors play important roles in heart failure and drug-induced cardiotoxicity (DICT). The Tox21 10 K library of drugs and environmental chemicals have been tested for their activity against β-adrenergic receptor subtypes 1 and 2 (ADRB1 and ADRB2), as well as inhibition of the human ether-à-go-go-related gene (hERG) in a quantitative high-throughput screening (qHTS) format. In this study, the Tox21 compound activity profiles in the ADRB1/2 and hERG assays were compared in relation to their DICT potential. The results showed that compounds that acted as ADRB1 agonists, ADRB2 antagonists, or hERG inhibitors were more likely to exhibit DICT. The ADRB1 and ADRB2 assays shared similar compound activity profiles, while the hERG inhibition assay identified a distinct set of active compounds. In addition, we identified structural features that may differentiate the cardiotoxic and non-toxic ADRB1 agonists. Finally, machine learning models were developed for ADRB1 activity prediction based on chemical structure. The models were used to virtually screen a collection of approximately 360 K diverse compounds, with the highest-ranked compounds selected for experimental validation. This work represents the first systematic study of drugs and environmental chemicals against ADRB1/2, providing important insights into β-adrenergic receptor-related cardiotoxicity mechanisms. By clarifying how specific pharmacological interactions contribute to cardiac risk, it provides a framework for early cardiotoxicity prediction and the design of safer therapeutics through integrated profiling and modeling.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"505 ","pages":"Article 117567"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic evaluation of Tox21 compounds that target β-adrenergic receptors and their role in cardiotoxicity\",\"authors\":\"Xi Luo , Li Zhang , Srilatha Sakamuru , Precious A. Adesina , Jinghua Zhao , Menghang Xia , Tuan Xu , Deborah K. Ngan , Jameson Travers , Savannah Wood , Ray Sukhawanit , Anthony Garrison , Carleen Klumpp-Thomas , Stephen S. Ferguson , Hu Zhu , Matthew D. Hall , David M. Reif , Ruili Huang\",\"doi\":\"10.1016/j.taap.2025.117567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>β-adrenergic receptors play important roles in heart failure and drug-induced cardiotoxicity (DICT). The Tox21 10 K library of drugs and environmental chemicals have been tested for their activity against β-adrenergic receptor subtypes 1 and 2 (ADRB1 and ADRB2), as well as inhibition of the human ether-à-go-go-related gene (hERG) in a quantitative high-throughput screening (qHTS) format. In this study, the Tox21 compound activity profiles in the ADRB1/2 and hERG assays were compared in relation to their DICT potential. The results showed that compounds that acted as ADRB1 agonists, ADRB2 antagonists, or hERG inhibitors were more likely to exhibit DICT. The ADRB1 and ADRB2 assays shared similar compound activity profiles, while the hERG inhibition assay identified a distinct set of active compounds. In addition, we identified structural features that may differentiate the cardiotoxic and non-toxic ADRB1 agonists. Finally, machine learning models were developed for ADRB1 activity prediction based on chemical structure. The models were used to virtually screen a collection of approximately 360 K diverse compounds, with the highest-ranked compounds selected for experimental validation. This work represents the first systematic study of drugs and environmental chemicals against ADRB1/2, providing important insights into β-adrenergic receptor-related cardiotoxicity mechanisms. By clarifying how specific pharmacological interactions contribute to cardiac risk, it provides a framework for early cardiotoxicity prediction and the design of safer therapeutics through integrated profiling and modeling.</div></div>\",\"PeriodicalId\":23174,\"journal\":{\"name\":\"Toxicology and applied pharmacology\",\"volume\":\"505 \",\"pages\":\"Article 117567\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology and applied pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041008X25003436\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25003436","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Systematic evaluation of Tox21 compounds that target β-adrenergic receptors and their role in cardiotoxicity
β-adrenergic receptors play important roles in heart failure and drug-induced cardiotoxicity (DICT). The Tox21 10 K library of drugs and environmental chemicals have been tested for their activity against β-adrenergic receptor subtypes 1 and 2 (ADRB1 and ADRB2), as well as inhibition of the human ether-à-go-go-related gene (hERG) in a quantitative high-throughput screening (qHTS) format. In this study, the Tox21 compound activity profiles in the ADRB1/2 and hERG assays were compared in relation to their DICT potential. The results showed that compounds that acted as ADRB1 agonists, ADRB2 antagonists, or hERG inhibitors were more likely to exhibit DICT. The ADRB1 and ADRB2 assays shared similar compound activity profiles, while the hERG inhibition assay identified a distinct set of active compounds. In addition, we identified structural features that may differentiate the cardiotoxic and non-toxic ADRB1 agonists. Finally, machine learning models were developed for ADRB1 activity prediction based on chemical structure. The models were used to virtually screen a collection of approximately 360 K diverse compounds, with the highest-ranked compounds selected for experimental validation. This work represents the first systematic study of drugs and environmental chemicals against ADRB1/2, providing important insights into β-adrenergic receptor-related cardiotoxicity mechanisms. By clarifying how specific pharmacological interactions contribute to cardiac risk, it provides a framework for early cardiotoxicity prediction and the design of safer therapeutics through integrated profiling and modeling.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.