基于模糊强化学习的二阶多智能体系统规定时间最优群体控制。

IF 10.5 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Li Shu,Shengyuan Xu
{"title":"基于模糊强化学习的二阶多智能体系统规定时间最优群体控制。","authors":"Li Shu,Shengyuan Xu","doi":"10.1109/tcyb.2025.3605589","DOIUrl":null,"url":null,"abstract":"This article investigates the prescribed-time (PT) optimal formation control issue for second-order MAS. A novel formation scheme that integrates RL with a FLS is presented, incorporating actor, critic, and identifier components to estimate the optimal control, the optimal cost function, and the uncertain system dynamics (including unknown nonlinearities, external disturbances, and leader input), respectively. To achieve PT formation, we introduce a prescribed performance function and a filtered variable, which are then used to develop an error transformation function for the controller design. Unlike existing PT control approaches, this method eliminates initial value limitations, ensuring that both the prescribed performance function's initial condition and the error transformation parameter are independent of the initial tracking error and system dynamics. We further demonstrate that the developed scheme ensures the prescribed performance of the filtered error, guaranteeing that all formation errors converge to a bounded region within the PT while achieving satisfactory transient performance. Finally, we illustrate the effectiveness of the scheme through two simulated examples.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"35 1","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prescribed-Time Optimal Formation Control Using Fuzzy Reinforcement Learning for Second-Order Multiagent Systems.\",\"authors\":\"Li Shu,Shengyuan Xu\",\"doi\":\"10.1109/tcyb.2025.3605589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the prescribed-time (PT) optimal formation control issue for second-order MAS. A novel formation scheme that integrates RL with a FLS is presented, incorporating actor, critic, and identifier components to estimate the optimal control, the optimal cost function, and the uncertain system dynamics (including unknown nonlinearities, external disturbances, and leader input), respectively. To achieve PT formation, we introduce a prescribed performance function and a filtered variable, which are then used to develop an error transformation function for the controller design. Unlike existing PT control approaches, this method eliminates initial value limitations, ensuring that both the prescribed performance function's initial condition and the error transformation parameter are independent of the initial tracking error and system dynamics. We further demonstrate that the developed scheme ensures the prescribed performance of the filtered error, guaranteeing that all formation errors converge to a bounded region within the PT while achieving satisfactory transient performance. Finally, we illustrate the effectiveness of the scheme through two simulated examples.\",\"PeriodicalId\":13112,\"journal\":{\"name\":\"IEEE Transactions on Cybernetics\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cybernetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/tcyb.2025.3605589\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tcyb.2025.3605589","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了二阶MAS的规定时间(PT)最优群体控制问题。提出了一种集成RL和FLS的新型编队方案,将参与者、评论家和标识符成分分别用于估计最优控制、最优成本函数和不确定系统动力学(包括未知非线性、外部干扰和领导者输入)。为了实现PT的形成,我们引入了一个规定的性能函数和一个过滤变量,然后使用它们来开发控制器设计的误差转换函数。与现有的PT控制方法不同,该方法消除了初始值限制,保证了规定性能函数的初始条件和误差变换参数与初始跟踪误差和系统动力学无关。我们进一步证明,所开发的方案保证了滤波误差的规定性能,保证了所有的地层误差收敛到PT内的有界区域,同时获得了满意的瞬态性能。最后,通过两个仿真实例说明了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prescribed-Time Optimal Formation Control Using Fuzzy Reinforcement Learning for Second-Order Multiagent Systems.
This article investigates the prescribed-time (PT) optimal formation control issue for second-order MAS. A novel formation scheme that integrates RL with a FLS is presented, incorporating actor, critic, and identifier components to estimate the optimal control, the optimal cost function, and the uncertain system dynamics (including unknown nonlinearities, external disturbances, and leader input), respectively. To achieve PT formation, we introduce a prescribed performance function and a filtered variable, which are then used to develop an error transformation function for the controller design. Unlike existing PT control approaches, this method eliminates initial value limitations, ensuring that both the prescribed performance function's initial condition and the error transformation parameter are independent of the initial tracking error and system dynamics. We further demonstrate that the developed scheme ensures the prescribed performance of the filtered error, guaranteeing that all formation errors converge to a bounded region within the PT while achieving satisfactory transient performance. Finally, we illustrate the effectiveness of the scheme through two simulated examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信