归一化时间分数型SUC流行病模型的数值模拟。

IF 1.6 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Chaeyoung Lee, Jyoti, Soobin Kwak, Yunjae Nam, Hyundong Kim, Junseok Kim
{"title":"归一化时间分数型SUC流行病模型的数值模拟。","authors":"Chaeyoung Lee, Jyoti, Soobin Kwak, Yunjae Nam, Hyundong Kim, Junseok Kim","doi":"10.1080/10255842.2025.2556313","DOIUrl":null,"url":null,"abstract":"<p><p>We develop a normalized time-fractional susceptible-unidentified infected-confirmed (SUC) epidemic model that incorporates memory effects through fractional calculus to capture non-local time interactions. Unlike integer-order models, this model reflects how past states influence present transmission. Numerical simulations show that smaller fractional orders accelerate the decline of susceptible individuals and produce faster but lower infection peaks, while larger orders yield slower, oscillatory declines and delayed peaks, indicating prolonged outbreaks. Moreover, the confirmation parameter critically shapes epidemic dynamics, as higher values reduce infection spread and lower peak levels of unidentified and confirmed cases, and this result highlights its role in controlling epidemic progression.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-9"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of a normalized time-fractional SUC epidemic model.\",\"authors\":\"Chaeyoung Lee, Jyoti, Soobin Kwak, Yunjae Nam, Hyundong Kim, Junseok Kim\",\"doi\":\"10.1080/10255842.2025.2556313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We develop a normalized time-fractional susceptible-unidentified infected-confirmed (SUC) epidemic model that incorporates memory effects through fractional calculus to capture non-local time interactions. Unlike integer-order models, this model reflects how past states influence present transmission. Numerical simulations show that smaller fractional orders accelerate the decline of susceptible individuals and produce faster but lower infection peaks, while larger orders yield slower, oscillatory declines and delayed peaks, indicating prolonged outbreaks. Moreover, the confirmation parameter critically shapes epidemic dynamics, as higher values reduce infection spread and lower peak levels of unidentified and confirmed cases, and this result highlights its role in controlling epidemic progression.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2556313\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2556313","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了一个标准化的时间-分数易感-未识别感染-确诊(SUC)流行病模型,该模型通过分数微积分结合记忆效应来捕获非局部时间相互作用。与整阶模型不同,该模型反映了过去的状态如何影响当前的传输。数值模拟表明,较小的分数阶加速了易感个体的下降,产生更快但更低的感染高峰,而较大的分数阶产生较慢的振荡下降和延迟高峰,表明疫情持续时间较长。此外,确认参数对流行病动态具有关键影响,因为较高的值会减少感染传播,并降低未确诊和确诊病例的峰值水平,这一结果突出了其在控制流行病进展中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of a normalized time-fractional SUC epidemic model.

We develop a normalized time-fractional susceptible-unidentified infected-confirmed (SUC) epidemic model that incorporates memory effects through fractional calculus to capture non-local time interactions. Unlike integer-order models, this model reflects how past states influence present transmission. Numerical simulations show that smaller fractional orders accelerate the decline of susceptible individuals and produce faster but lower infection peaks, while larger orders yield slower, oscillatory declines and delayed peaks, indicating prolonged outbreaks. Moreover, the confirmation parameter critically shapes epidemic dynamics, as higher values reduce infection spread and lower peak levels of unidentified and confirmed cases, and this result highlights its role in controlling epidemic progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信