单神经元动作电位的体内磁记录。

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries
{"title":"单神经元动作电位的体内磁记录。","authors":"Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries","doi":"10.1152/jn.00491.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging <i>in vivo</i>. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of <i>in vivo</i> magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> magnetic recording of single-neuron action potentials.\",\"authors\":\"Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries\",\"doi\":\"10.1152/jn.00491.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging <i>in vivo</i>. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of <i>in vivo</i> magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00491.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00491.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

快速神经元信号的测量是电生理学和磁生理学的研究领域。虽然电生理学更容易执行,但磁生理学避免了基于组织的扭曲,并测量了带有方向信息的信号。在宏观尺度上,建立了脑磁图(MEG),在中尺度上,已经报道了视觉诱发磁场。然而,在微观尺度上,虽然记录电尖峰的磁性对应物的好处很多,但它们在体内也极具挑战性。在这里,我们使用微型巨磁电阻(GMR)传感器将麻醉的雄性大鼠的神经元动作电位的磁和电记录结合起来。我们揭示了隔离良好的单个单元的动作电位的磁特征。记录的磁信号波形清晰,信号强度大。体内磁动作电位的演示为利用磁和电记录的联合力量开辟了广阔的可能性领域,从而显著推进了对神经元回路的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In vivo magnetic recording of single-neuron action potentials.

Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging in vivo. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of in vivo magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信