Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries
{"title":"单神经元动作电位的体内磁记录。","authors":"Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries","doi":"10.1152/jn.00491.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging <i>in vivo</i>. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of <i>in vivo</i> magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vivo</i> magnetic recording of single-neuron action potentials.\",\"authors\":\"Frederike J Klein, Patrick Jendritza, Chloé Chopin, Mohsen Parto-Dezfouli, Aurélie Solignac, Claude Fermon, Myriam Pannetier-Lecoeur, Pascal Fries\",\"doi\":\"10.1152/jn.00491.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging <i>in vivo</i>. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of <i>in vivo</i> magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00491.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00491.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
In vivo magnetic recording of single-neuron action potentials.
Measuring fast neuronal signals is the domain of electrophysiology and magnetophysiology. While electrophysiology is easier to perform, magnetophysiology avoids tissue-based distortions and measures a signal with directional information. At the macroscale, magnetoencephalography (MEG) is established, and at the mesoscale, visually evoked magnetic fields have been reported. At the microscale however, while benefits of recording magnetic counterparts of electric spikes would be numerous, they are also highly challenging in vivo. Here, we combine magnetic and electric recordings of neuronal action potentials in anesthetized, male rats using miniaturized giant magneto-resistance (GMR) sensors. We reveal the magnetic signature of action potentials of well-isolated single units. The recorded magnetic signals showed a distinct waveform and considerable signal strength. This demonstration of in vivo magnetic action potentials opens a wide field of possibilities to profit from the combined power of magnetic and electric recordings and thus to significantly advance the understanding of neuronal circuits.
期刊介绍:
The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.