具有增强动态辐射冷却和太阳调制的腔体工程智能窗

IF 9.7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chong Wang , Jian Wang , Xiaoyu Sun , Zuoxu Wu , Fangyuan Yu , Zirui Zhao , Jun Mao , Qian Zhang , Feng Cao
{"title":"具有增强动态辐射冷却和太阳调制的腔体工程智能窗","authors":"Chong Wang ,&nbsp;Jian Wang ,&nbsp;Xiaoyu Sun ,&nbsp;Zuoxu Wu ,&nbsp;Fangyuan Yu ,&nbsp;Zirui Zhao ,&nbsp;Jun Mao ,&nbsp;Qian Zhang ,&nbsp;Feng Cao","doi":"10.1016/j.mtphys.2025.101866","DOIUrl":null,"url":null,"abstract":"<div><div>The passive dynamic radiative cooling (PDRC) smart window passively modulates long-wave infrared (LWIR) radiation intensity in response to ambient temperature, enabling passive cooling in summer and thermal insulation in winter. Nevertheless, significant challenges remain in simultaneously optimizing solar transmittance (<em>T</em><sub>sol</sub>), LWIR emissivity modulation (Δ<em>ɛ</em><sub>LWIR</sub>), and daylight harvesting. Herein, we constructed an adaptive bifunctional anti-reflection or high-reflection layer integrated with a Fabry-Pérot (F-P) cavity architecture comprising a top W<sub><em>x</em></sub>V<sub>1-<em>x</em></sub>O<sub>2</sub> lay, a porous SiO<sub>2</sub> spacer, and a bottom FTO layer on a glass substrate. This design enables a remarkable improvement of Δ<em>T</em><sub>sol</sub> from 1.96 % to 6.45 % between high- and low-temperature states while maintaining strong LWIR emissivity modulation (Δ<em>ɛ</em><sub>LWIR</sub> = 0.48) within the atmospheric window (8–13 μm). The rough surface morphology of W<sub><em>x</em></sub>V<sub>1-<em>x</em></sub>O<sub>2</sub> plays a critical role in enhancing both luminous transmittance (<em>T</em><sub>lum</sub>) and Δ<em>T</em><sub>sol</sub>. <em>T</em><sub>lum</sub> = 0.50 meets the minimum requirement for lighting in residential and office buildings, without generating additional lighting energy consumption during the day. Furthermore, energy consumption simulation verifies the application potential of the designed smart windows under diverse global climatic conditions. These design strategies broaden the spectral regulation range of PDRC smart windows and pave the way for their practical applications.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"58 ","pages":"Article 101866"},"PeriodicalIF":9.7000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabry-Pérot cavity-engineered smart windows with enhanced dynamic radiative cooling and solar modulation\",\"authors\":\"Chong Wang ,&nbsp;Jian Wang ,&nbsp;Xiaoyu Sun ,&nbsp;Zuoxu Wu ,&nbsp;Fangyuan Yu ,&nbsp;Zirui Zhao ,&nbsp;Jun Mao ,&nbsp;Qian Zhang ,&nbsp;Feng Cao\",\"doi\":\"10.1016/j.mtphys.2025.101866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The passive dynamic radiative cooling (PDRC) smart window passively modulates long-wave infrared (LWIR) radiation intensity in response to ambient temperature, enabling passive cooling in summer and thermal insulation in winter. Nevertheless, significant challenges remain in simultaneously optimizing solar transmittance (<em>T</em><sub>sol</sub>), LWIR emissivity modulation (Δ<em>ɛ</em><sub>LWIR</sub>), and daylight harvesting. Herein, we constructed an adaptive bifunctional anti-reflection or high-reflection layer integrated with a Fabry-Pérot (F-P) cavity architecture comprising a top W<sub><em>x</em></sub>V<sub>1-<em>x</em></sub>O<sub>2</sub> lay, a porous SiO<sub>2</sub> spacer, and a bottom FTO layer on a glass substrate. This design enables a remarkable improvement of Δ<em>T</em><sub>sol</sub> from 1.96 % to 6.45 % between high- and low-temperature states while maintaining strong LWIR emissivity modulation (Δ<em>ɛ</em><sub>LWIR</sub> = 0.48) within the atmospheric window (8–13 μm). The rough surface morphology of W<sub><em>x</em></sub>V<sub>1-<em>x</em></sub>O<sub>2</sub> plays a critical role in enhancing both luminous transmittance (<em>T</em><sub>lum</sub>) and Δ<em>T</em><sub>sol</sub>. <em>T</em><sub>lum</sub> = 0.50 meets the minimum requirement for lighting in residential and office buildings, without generating additional lighting energy consumption during the day. Furthermore, energy consumption simulation verifies the application potential of the designed smart windows under diverse global climatic conditions. These design strategies broaden the spectral regulation range of PDRC smart windows and pave the way for their practical applications.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"58 \",\"pages\":\"Article 101866\"},\"PeriodicalIF\":9.7000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325002226\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325002226","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

被动动态辐射制冷(PDRC)智能窗根据环境温度被动调节长波红外(LWIR)辐射强度,实现夏季被动制冷,冬季保温。然而,在同时优化太阳透射率(Tsol)、LWIR发射率调制(Δ / LWIR)和日光收集方面仍然存在重大挑战。在此,我们构建了一个自适应双功能抗反射或高反射层,集成了fabry - p (F-P)腔结构,包括顶部wxx1 - xo2层,多孔SiO2间隔层和底部FTO层。该设计在8 ~ 13 μm大气窗口内保持了较强的LWIR发射率调制(Δ / LWIR = 0.48)的同时,使高低温态和低温态之间的ΔTsol从1.96%提高到6.45%。wxx1 - xo2的粗糙表面形貌对提高透光率(Tlum)和ΔTsol起着至关重要的作用。Tlum = 0.50满足住宅和办公建筑照明的最低要求,在白天不会产生额外的照明能耗。通过能耗仿真验证了所设计的智能窗在全球不同气候条件下的应用潜力。这些设计策略拓宽了PDRC智能窗的光谱调节范围,为其实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fabry-Pérot cavity-engineered smart windows with enhanced dynamic radiative cooling and solar modulation
The passive dynamic radiative cooling (PDRC) smart window passively modulates long-wave infrared (LWIR) radiation intensity in response to ambient temperature, enabling passive cooling in summer and thermal insulation in winter. Nevertheless, significant challenges remain in simultaneously optimizing solar transmittance (Tsol), LWIR emissivity modulation (ΔɛLWIR), and daylight harvesting. Herein, we constructed an adaptive bifunctional anti-reflection or high-reflection layer integrated with a Fabry-Pérot (F-P) cavity architecture comprising a top WxV1-xO2 lay, a porous SiO2 spacer, and a bottom FTO layer on a glass substrate. This design enables a remarkable improvement of ΔTsol from 1.96 % to 6.45 % between high- and low-temperature states while maintaining strong LWIR emissivity modulation (ΔɛLWIR = 0.48) within the atmospheric window (8–13 μm). The rough surface morphology of WxV1-xO2 plays a critical role in enhancing both luminous transmittance (Tlum) and ΔTsol. Tlum = 0.50 meets the minimum requirement for lighting in residential and office buildings, without generating additional lighting energy consumption during the day. Furthermore, energy consumption simulation verifies the application potential of the designed smart windows under diverse global climatic conditions. These design strategies broaden the spectral regulation range of PDRC smart windows and pave the way for their practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信