惩罚函数回归使用R包PFLR。

IF 1.1 4区 数学 Q2 STATISTICS & PROBABILITY
Journal of Applied Statistics Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.1080/02664763.2025.2457011
Rob Cameron, Tianyu Guan, Haolun Shi, Zhenhua Lin
{"title":"惩罚函数回归使用R包PFLR。","authors":"Rob Cameron, Tianyu Guan, Haolun Shi, Zhenhua Lin","doi":"10.1080/02664763.2025.2457011","DOIUrl":null,"url":null,"abstract":"<p><p>Penalized functional regression is a useful tool to estimate models for applications where the effect/coefficient function is assumed to be truncated. The truncated coefficient function occurs when the functional predictor does not influence the response after a certain cutoff point on the time domain. The R package <b>PFLR</b> offers an extensive suite of methods for advanced functional regression techniques with penalization. The package implements four distinct methods, each tailored to different models, effectively addressing a range of scenarios. This is demonstrated through simulations as well as an application to particulate matter emissions data. Generic S3 methods are also implemented for each model to help with summary, visualization and interpretation.</p>","PeriodicalId":15239,"journal":{"name":"Journal of Applied Statistics","volume":"52 11","pages":"2191-2205"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424440/pdf/","citationCount":"0","resultStr":"{\"title\":\"Penalized functional regression using R package PFLR.\",\"authors\":\"Rob Cameron, Tianyu Guan, Haolun Shi, Zhenhua Lin\",\"doi\":\"10.1080/02664763.2025.2457011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Penalized functional regression is a useful tool to estimate models for applications where the effect/coefficient function is assumed to be truncated. The truncated coefficient function occurs when the functional predictor does not influence the response after a certain cutoff point on the time domain. The R package <b>PFLR</b> offers an extensive suite of methods for advanced functional regression techniques with penalization. The package implements four distinct methods, each tailored to different models, effectively addressing a range of scenarios. This is demonstrated through simulations as well as an application to particulate matter emissions data. Generic S3 methods are also implemented for each model to help with summary, visualization and interpretation.</p>\",\"PeriodicalId\":15239,\"journal\":{\"name\":\"Journal of Applied Statistics\",\"volume\":\"52 11\",\"pages\":\"2191-2205\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12424440/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/02664763.2025.2457011\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02664763.2025.2457011","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于假设效应/系数函数被截断的应用程序,惩罚函数回归是估计模型的有用工具。当函数预测器在时域上的某个截止点之后不影响响应时,就会出现截断系数函数。R包PFLR为高级函数回归技术提供了一套广泛的方法。该软件包实现了四种不同的方法,每种方法都针对不同的模型进行了定制,有效地解决了一系列场景。通过模拟以及对颗粒物排放数据的应用证明了这一点。还为每个模型实现了通用的S3方法,以帮助进行总结、可视化和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Penalized functional regression using R package PFLR.

Penalized functional regression is a useful tool to estimate models for applications where the effect/coefficient function is assumed to be truncated. The truncated coefficient function occurs when the functional predictor does not influence the response after a certain cutoff point on the time domain. The R package PFLR offers an extensive suite of methods for advanced functional regression techniques with penalization. The package implements four distinct methods, each tailored to different models, effectively addressing a range of scenarios. This is demonstrated through simulations as well as an application to particulate matter emissions data. Generic S3 methods are also implemented for each model to help with summary, visualization and interpretation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Statistics
Journal of Applied Statistics 数学-统计学与概率论
CiteScore
3.40
自引率
0.00%
发文量
126
审稿时长
6 months
期刊介绍: Journal of Applied Statistics provides a forum for communication between both applied statisticians and users of applied statistical techniques across a wide range of disciplines. These areas include business, computing, economics, ecology, education, management, medicine, operational research and sociology, but papers from other areas are also considered. The editorial policy is to publish rigorous but clear and accessible papers on applied techniques. Purely theoretical papers are avoided but those on theoretical developments which clearly demonstrate significant applied potential are welcomed. Each paper is submitted to at least two independent referees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信