谷氨酸诱导的枯草芽孢杆菌SCP017-03 γ-PGA生物合成的代谢组学研究及规模化生产的工艺优化

IF 3.6 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Wenshan Cai, Shuai Jing, Laiying Yang, Yun Wu, Wei Li, Yao Ren, Jiao Li, Fanglan Ge
{"title":"谷氨酸诱导的枯草芽孢杆菌SCP017-03 γ-PGA生物合成的代谢组学研究及规模化生产的工艺优化","authors":"Wenshan Cai, Shuai Jing, Laiying Yang, Yun Wu, Wei Li, Yao Ren, Jiao Li, Fanglan Ge","doi":"10.1007/s00449-025-03234-1","DOIUrl":null,"url":null,"abstract":"<p><p>This study focuses on the glutamate-dependent strain Bacillus subtilis SCP017-03, systematically investigating its metabolic mechanism for synthesizing γ-polyglutamic acid (γ-PGA) in the presence of exogenous glutamate, as well as optimizing its fermentation conditions. Metabolomic analysis revealed that glutamate addition significantly altered the cellular metabolic profile, with 480 out of 1674 metabolites showing differential expression. Notably, pathways such as the TCA cycle, glycolysis, glutathione metabolism, and amino acid metabolism were significantly upregulated, enhancing precursor supply and energy metabolism, thereby promoting γ-PGA synthesis. Based on these findings, fermentation conditions were optimized in a 5-L bioreactor. Yeast extract was identified as the optimal nitrogen-rich nutrient, and at an addition level of 7.5 g/L, the γ-PGA yield reached 87 g/L. The optimal conversion efficiency and yield were achieved with a 5% addition of monosodium glutamate. Molecular weight analysis showed that the resulting γ-PGA predominantly ranged from 1071 to 4897 kDa, making it suitable for agricultural applications. In a 30-L scale-up fermentation, γ-PGA production reached 71 g/L through optimized aeration, agitation, and feeding strategies, demonstrating the scalability of the process. Finally, optimized spray-drying conditions (inlet temperature of 160 °C) resulted in a 67% recovery rate with a desirable product appearance. This study provides important metabolic regulation strategies and engineering optimization foundations for the efficient industrial production of γ-PGA.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolomic insights into glutamate-induced γ-PGA biosynthesis and process optimization in Bacillus subtilis SCP017-03 for scalable production.\",\"authors\":\"Wenshan Cai, Shuai Jing, Laiying Yang, Yun Wu, Wei Li, Yao Ren, Jiao Li, Fanglan Ge\",\"doi\":\"10.1007/s00449-025-03234-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study focuses on the glutamate-dependent strain Bacillus subtilis SCP017-03, systematically investigating its metabolic mechanism for synthesizing γ-polyglutamic acid (γ-PGA) in the presence of exogenous glutamate, as well as optimizing its fermentation conditions. Metabolomic analysis revealed that glutamate addition significantly altered the cellular metabolic profile, with 480 out of 1674 metabolites showing differential expression. Notably, pathways such as the TCA cycle, glycolysis, glutathione metabolism, and amino acid metabolism were significantly upregulated, enhancing precursor supply and energy metabolism, thereby promoting γ-PGA synthesis. Based on these findings, fermentation conditions were optimized in a 5-L bioreactor. Yeast extract was identified as the optimal nitrogen-rich nutrient, and at an addition level of 7.5 g/L, the γ-PGA yield reached 87 g/L. The optimal conversion efficiency and yield were achieved with a 5% addition of monosodium glutamate. Molecular weight analysis showed that the resulting γ-PGA predominantly ranged from 1071 to 4897 kDa, making it suitable for agricultural applications. In a 30-L scale-up fermentation, γ-PGA production reached 71 g/L through optimized aeration, agitation, and feeding strategies, demonstrating the scalability of the process. Finally, optimized spray-drying conditions (inlet temperature of 160 °C) resulted in a 67% recovery rate with a desirable product appearance. This study provides important metabolic regulation strategies and engineering optimization foundations for the efficient industrial production of γ-PGA.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-025-03234-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-025-03234-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以谷氨酸依赖菌株枯草芽孢杆菌SCP017-03为研究对象,系统研究其在外源谷氨酸存在下合成γ-聚谷氨酸(γ-PGA)的代谢机制,并对其发酵条件进行优化。代谢组学分析显示,添加谷氨酸显著改变了细胞代谢谱,1674种代谢物中有480种表现出差异表达。值得注意的是,TCA循环、糖酵解、谷胱甘肽代谢、氨基酸代谢等途径显著上调,增强前体供应和能量代谢,从而促进γ-PGA合成。在此基础上,优化了5-L生物反应器的发酵条件。酵母浸膏为最佳富氮营养物,添加量为7.5 g/L时,γ-PGA产量可达87 g/L。在谷氨酸钠添加量为5%的条件下,获得了最佳的转化效率和收率。分子量分析表明,所得γ-PGA主要分布在1071 ~ 4897 kDa之间,适合农业应用。在30 L的放大发酵中,通过优化曝气、搅拌和投料策略,γ-PGA产量达到71 g/L,证明了该工艺的可扩展性。最后,优化喷雾干燥条件(进口温度为160°C),回收率为67%,产品外观理想。该研究为γ-PGA的高效工业化生产提供了重要的代谢调控策略和工程优化依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolomic insights into glutamate-induced γ-PGA biosynthesis and process optimization in Bacillus subtilis SCP017-03 for scalable production.

This study focuses on the glutamate-dependent strain Bacillus subtilis SCP017-03, systematically investigating its metabolic mechanism for synthesizing γ-polyglutamic acid (γ-PGA) in the presence of exogenous glutamate, as well as optimizing its fermentation conditions. Metabolomic analysis revealed that glutamate addition significantly altered the cellular metabolic profile, with 480 out of 1674 metabolites showing differential expression. Notably, pathways such as the TCA cycle, glycolysis, glutathione metabolism, and amino acid metabolism were significantly upregulated, enhancing precursor supply and energy metabolism, thereby promoting γ-PGA synthesis. Based on these findings, fermentation conditions were optimized in a 5-L bioreactor. Yeast extract was identified as the optimal nitrogen-rich nutrient, and at an addition level of 7.5 g/L, the γ-PGA yield reached 87 g/L. The optimal conversion efficiency and yield were achieved with a 5% addition of monosodium glutamate. Molecular weight analysis showed that the resulting γ-PGA predominantly ranged from 1071 to 4897 kDa, making it suitable for agricultural applications. In a 30-L scale-up fermentation, γ-PGA production reached 71 g/L through optimized aeration, agitation, and feeding strategies, demonstrating the scalability of the process. Finally, optimized spray-drying conditions (inlet temperature of 160 °C) resulted in a 67% recovery rate with a desirable product appearance. This study provides important metabolic regulation strategies and engineering optimization foundations for the efficient industrial production of γ-PGA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信