Hatice Demirtas, Kenan Can Tok, Mehmet Gumustas, Ceyda Tuba Sengel-Turk
{"title":"抗癌药物奈洛沙胺脂质纳米胶囊的定量与工程研究。","authors":"Hatice Demirtas, Kenan Can Tok, Mehmet Gumustas, Ceyda Tuba Sengel-Turk","doi":"10.2174/0113816128385620250829061535","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Recent studies indicate that niclosamide demonstrates considerable promise as both an anthelmintic agent and a possible anticancer medication. Given the increasing interest in nano-sized drug delivery methods for cancer therapy, lipid nanocapsules (LNCs) have emerged as a viable approach to enhance the bioavailability of poorly soluble pharmaceuticals due to their beneficial properties. This research intends to develop niclosamide-loaded lipid nanocapsules (NIC-LNCs) using the phase inversion technique, followed by the optimization of these formulations via the Box-Behnken experimental design.</p><p><strong>Methods: </strong>A reverse-phase high-performance liquid chromatography (RP-HPLC) method was devised and validated for quantifying niclosamide in the LNC formulations. Optimal chromatographic separation was attained utilizing an Agilent Eclipse XDB-C18 column (150×4.6 mm, 5 μm i.d.) with a mobile phase of a 50:50 (v/v) mixture of acetonitrile and 0.1% H3PO4 phosphate buffer, at a flow rate of 1.2 mL/min. The detection wavelength was set at 335 nm, and the analysis was performed at 35°C. The developed analytical methodology was validated through a comprehensive evaluation of accuracy, linearity, precision, limit of detection, limit of quantitation, specificity, and stability.</p><p><strong>Results: </strong>The optimization of the NIC-LNC formulation through the Box-Behnken design resulted in an optimal formulation labeled LNC5, consisting of 4% niclosamide, 20% lipid, and 20% surfactant. The proven RPHPLC method enables accurate quantification of NIC in the LNC formulations. The refined NIC-LNC formulation exhibited developed attributes as assessed by the design.</p><p><strong>Conclusion: </strong>The findings indicate that LNC systems are a promising method for drug administration, especially for anticancer drugs with limited solubility in water.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantification and Engineering of Lipid Nanocapsule Formulations for the Delivery of Niclosamide as an Anti-Cancer Drug.\",\"authors\":\"Hatice Demirtas, Kenan Can Tok, Mehmet Gumustas, Ceyda Tuba Sengel-Turk\",\"doi\":\"10.2174/0113816128385620250829061535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Recent studies indicate that niclosamide demonstrates considerable promise as both an anthelmintic agent and a possible anticancer medication. Given the increasing interest in nano-sized drug delivery methods for cancer therapy, lipid nanocapsules (LNCs) have emerged as a viable approach to enhance the bioavailability of poorly soluble pharmaceuticals due to their beneficial properties. This research intends to develop niclosamide-loaded lipid nanocapsules (NIC-LNCs) using the phase inversion technique, followed by the optimization of these formulations via the Box-Behnken experimental design.</p><p><strong>Methods: </strong>A reverse-phase high-performance liquid chromatography (RP-HPLC) method was devised and validated for quantifying niclosamide in the LNC formulations. Optimal chromatographic separation was attained utilizing an Agilent Eclipse XDB-C18 column (150×4.6 mm, 5 μm i.d.) with a mobile phase of a 50:50 (v/v) mixture of acetonitrile and 0.1% H3PO4 phosphate buffer, at a flow rate of 1.2 mL/min. The detection wavelength was set at 335 nm, and the analysis was performed at 35°C. The developed analytical methodology was validated through a comprehensive evaluation of accuracy, linearity, precision, limit of detection, limit of quantitation, specificity, and stability.</p><p><strong>Results: </strong>The optimization of the NIC-LNC formulation through the Box-Behnken design resulted in an optimal formulation labeled LNC5, consisting of 4% niclosamide, 20% lipid, and 20% surfactant. The proven RPHPLC method enables accurate quantification of NIC in the LNC formulations. The refined NIC-LNC formulation exhibited developed attributes as assessed by the design.</p><p><strong>Conclusion: </strong>The findings indicate that LNC systems are a promising method for drug administration, especially for anticancer drugs with limited solubility in water.</p>\",\"PeriodicalId\":10845,\"journal\":{\"name\":\"Current pharmaceutical design\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical design\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113816128385620250829061535\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128385620250829061535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Quantification and Engineering of Lipid Nanocapsule Formulations for the Delivery of Niclosamide as an Anti-Cancer Drug.
Introduction: Recent studies indicate that niclosamide demonstrates considerable promise as both an anthelmintic agent and a possible anticancer medication. Given the increasing interest in nano-sized drug delivery methods for cancer therapy, lipid nanocapsules (LNCs) have emerged as a viable approach to enhance the bioavailability of poorly soluble pharmaceuticals due to their beneficial properties. This research intends to develop niclosamide-loaded lipid nanocapsules (NIC-LNCs) using the phase inversion technique, followed by the optimization of these formulations via the Box-Behnken experimental design.
Methods: A reverse-phase high-performance liquid chromatography (RP-HPLC) method was devised and validated for quantifying niclosamide in the LNC formulations. Optimal chromatographic separation was attained utilizing an Agilent Eclipse XDB-C18 column (150×4.6 mm, 5 μm i.d.) with a mobile phase of a 50:50 (v/v) mixture of acetonitrile and 0.1% H3PO4 phosphate buffer, at a flow rate of 1.2 mL/min. The detection wavelength was set at 335 nm, and the analysis was performed at 35°C. The developed analytical methodology was validated through a comprehensive evaluation of accuracy, linearity, precision, limit of detection, limit of quantitation, specificity, and stability.
Results: The optimization of the NIC-LNC formulation through the Box-Behnken design resulted in an optimal formulation labeled LNC5, consisting of 4% niclosamide, 20% lipid, and 20% surfactant. The proven RPHPLC method enables accurate quantification of NIC in the LNC formulations. The refined NIC-LNC formulation exhibited developed attributes as assessed by the design.
Conclusion: The findings indicate that LNC systems are a promising method for drug administration, especially for anticancer drugs with limited solubility in water.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.