{"title":"四次曲线的(正)二次行列式表示和罗宾逊多项式","authors":"Clemens Brüser, Mario Kummer","doi":"10.1016/j.laa.2025.09.006","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and Šivic.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"728 ","pages":"Pages 232-262"},"PeriodicalIF":1.1000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial\",\"authors\":\"Clemens Brüser, Mario Kummer\",\"doi\":\"10.1016/j.laa.2025.09.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and Šivic.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"728 \",\"pages\":\"Pages 232-262\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525003726\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525003726","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
(Positive) quadratic determinantal representations of quartic curves and the Robinson polynomial
We prove that every real nonnegative ternary quartic whose complex zero set is smooth can be represented as the determinant of a symmetric matrix with quadratic entries which is everywhere positive semidefinite. We show that the corresponding statement fails for the Robinson polynomial, answering a question by Buckley and Šivic.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.