Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli
{"title":"提高RRAM可靠性:探索Al掺杂对hfo2基器件的影响","authors":"Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli","doi":"10.1109/TDMR.2025.3581061","DOIUrl":null,"url":null,"abstract":"This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures (<inline-formula> <tex-math>$125~{^{\\circ }}$ </tex-math></inline-formula>C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"379-387"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing RRAM Reliability: Exploring the Effects of Al Doping on HfO2-Based Devices\",\"authors\":\"Andrea Baroni;Eduardo Pérez;Keerthi Dorai Swamy Reddy;Stefan Pechmann;Christian Wenger;Daniele Ielmini;Cristian Zambelli\",\"doi\":\"10.1109/TDMR.2025.3581061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures (<inline-formula> <tex-math>$125~{^{\\\\circ }}$ </tex-math></inline-formula>C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"25 3\",\"pages\":\"379-387\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11039729/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11039729/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Enhancing RRAM Reliability: Exploring the Effects of Al Doping on HfO2-Based Devices
This study provides a comprehensive evaluation of RRAM devices based on HfO2 and Al-doped HfO2 insulators, focusing on critical performance metrics, including Forming yield, Post-Programming Stability (PPS), Fast Drift, Endurance, and Retention at elevated temperatures ($125~{^{\circ }}$ C). Aluminum doping significantly enhances device reliability and stability, improving Forming yield, reducing current drift during programming and Retention tests, and minimizing variability during Endurance cycling. While Al5%:HfO2 achieves most of the observed benefits compared to pure HfO2, Al7%:HfO2 offers incremental advantages for scenarios requiring extreme reliability. These findings position Al-doped HfO2 devices as a promising solution for RRAM-based systems in memory and neuromorphic computing, highlighting the potential trade-off between performance gains and increased fabrication complexity. This work underlines the importance of material engineering for optimizing RRAM devices in application-specific contexts.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.