{"title":"逻辑细胞对激光故障注入的敏感性:IHP技术的实验结果综述","authors":"Dmytro Petryk;Peter Langendoerfer;Zoya Dyka","doi":"10.1109/TDMR.2025.3596380","DOIUrl":null,"url":null,"abstract":"In this work, we provide an overview of our front-side Fault Injection (FI) experiments with different logic cells manufactured in two IHP BiCMOS technologies using Riscure equipment for laser FIs. We were able to inject faults into different types of cells including standard library cells as well as into two types of radiation tolerant flip-flops. Experimenting with radiation-tolerant flip-flops faults were injected illuminating areas with PMOS transistors in OFF state. We determined the cells areas, which were sensitive to the laser FI attacks. Only few works discussed this aspect in the past determining NMOS transistors as the sensitive part of the logic cells. Knowledge about the areas which are sensitive to the laser FI attacks can be generalized experimenting with other technologies and used in future by designers to implement corresponding countermeasure(s) at the initial stage of chip development.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"410-423"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11115104","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of Logic Cells to Laser Fault Injections: An Overview of Experimental Results for IHP Technologies\",\"authors\":\"Dmytro Petryk;Peter Langendoerfer;Zoya Dyka\",\"doi\":\"10.1109/TDMR.2025.3596380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we provide an overview of our front-side Fault Injection (FI) experiments with different logic cells manufactured in two IHP BiCMOS technologies using Riscure equipment for laser FIs. We were able to inject faults into different types of cells including standard library cells as well as into two types of radiation tolerant flip-flops. Experimenting with radiation-tolerant flip-flops faults were injected illuminating areas with PMOS transistors in OFF state. We determined the cells areas, which were sensitive to the laser FI attacks. Only few works discussed this aspect in the past determining NMOS transistors as the sensitive part of the logic cells. Knowledge about the areas which are sensitive to the laser FI attacks can be generalized experimenting with other technologies and used in future by designers to implement corresponding countermeasure(s) at the initial stage of chip development.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"25 3\",\"pages\":\"410-423\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11115104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11115104/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11115104/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Sensitivity of Logic Cells to Laser Fault Injections: An Overview of Experimental Results for IHP Technologies
In this work, we provide an overview of our front-side Fault Injection (FI) experiments with different logic cells manufactured in two IHP BiCMOS technologies using Riscure equipment for laser FIs. We were able to inject faults into different types of cells including standard library cells as well as into two types of radiation tolerant flip-flops. Experimenting with radiation-tolerant flip-flops faults were injected illuminating areas with PMOS transistors in OFF state. We determined the cells areas, which were sensitive to the laser FI attacks. Only few works discussed this aspect in the past determining NMOS transistors as the sensitive part of the logic cells. Knowledge about the areas which are sensitive to the laser FI attacks can be generalized experimenting with other technologies and used in future by designers to implement corresponding countermeasure(s) at the initial stage of chip development.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.