Zhiqian Yang , Kaixiang Hu , Rongsong Ge , Lite Zhao , Tingting Jin , Yizhan Chen
{"title":"提高光耦合器封装性能的Au-Pd-Ag合金焊线的微观结构与分析","authors":"Zhiqian Yang , Kaixiang Hu , Rongsong Ge , Lite Zhao , Tingting Jin , Yizhan Chen","doi":"10.1016/j.microrel.2025.115907","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the microstructural characteristics and formation mechanisms in Au-Pd-Ag alloy bonding wires for optocoupler packaging. Bonding wires with different gold contents (20 %, 60 %, and 99.99 %) were analyzed using SEM and EDS. The results show that the alloy wire with 60 % gold content exhibits uniform elemental distribution and forms a stable layer at the bonding interface, significantly enhancing bonding strength and reliability. Under accelerated aging tests, including intermetalic compound highly accelerated stress test and high-temperature storage test, the alloy wire demonstrates excellent resistance to aging, with growth following a parabolic law. Optimizing the Au and Pd content effectively slows intermetallic compound (IMC) formation, improving long-term stability. Additionally, the optimized alloy composition enhances optocoupler performance by improving <em>Iceo</em> and <em>V</em><sub><em>F</em></sub> characteristics while reducing production costs. This study provides a high-performance alternative for optocoupler packaging and offers insights into the microstructural design and layer control of alloy bonding wires, advancing electronic packaging technology.</div></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"175 ","pages":"Article 115907"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and analysis of Au-Pd-Ag alloy bonding wires for enhanced optocoupler packaging performance\",\"authors\":\"Zhiqian Yang , Kaixiang Hu , Rongsong Ge , Lite Zhao , Tingting Jin , Yizhan Chen\",\"doi\":\"10.1016/j.microrel.2025.115907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the microstructural characteristics and formation mechanisms in Au-Pd-Ag alloy bonding wires for optocoupler packaging. Bonding wires with different gold contents (20 %, 60 %, and 99.99 %) were analyzed using SEM and EDS. The results show that the alloy wire with 60 % gold content exhibits uniform elemental distribution and forms a stable layer at the bonding interface, significantly enhancing bonding strength and reliability. Under accelerated aging tests, including intermetalic compound highly accelerated stress test and high-temperature storage test, the alloy wire demonstrates excellent resistance to aging, with growth following a parabolic law. Optimizing the Au and Pd content effectively slows intermetallic compound (IMC) formation, improving long-term stability. Additionally, the optimized alloy composition enhances optocoupler performance by improving <em>Iceo</em> and <em>V</em><sub><em>F</em></sub> characteristics while reducing production costs. This study provides a high-performance alternative for optocoupler packaging and offers insights into the microstructural design and layer control of alloy bonding wires, advancing electronic packaging technology.</div></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"175 \",\"pages\":\"Article 115907\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271425003208\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271425003208","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Microstructure and analysis of Au-Pd-Ag alloy bonding wires for enhanced optocoupler packaging performance
This study investigates the microstructural characteristics and formation mechanisms in Au-Pd-Ag alloy bonding wires for optocoupler packaging. Bonding wires with different gold contents (20 %, 60 %, and 99.99 %) were analyzed using SEM and EDS. The results show that the alloy wire with 60 % gold content exhibits uniform elemental distribution and forms a stable layer at the bonding interface, significantly enhancing bonding strength and reliability. Under accelerated aging tests, including intermetalic compound highly accelerated stress test and high-temperature storage test, the alloy wire demonstrates excellent resistance to aging, with growth following a parabolic law. Optimizing the Au and Pd content effectively slows intermetallic compound (IMC) formation, improving long-term stability. Additionally, the optimized alloy composition enhances optocoupler performance by improving Iceo and VF characteristics while reducing production costs. This study provides a high-performance alternative for optocoupler packaging and offers insights into the microstructural design and layer control of alloy bonding wires, advancing electronic packaging technology.
期刊介绍:
Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged.
Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.