谐波傅立叶分解及其在旋转机械系统故障识别中的应用

IF 11 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL
Kun Zhang , Jiayi Fan , Miaorui Yang , Hong Jiang , Yonggang Xu
{"title":"谐波傅立叶分解及其在旋转机械系统故障识别中的应用","authors":"Kun Zhang ,&nbsp;Jiayi Fan ,&nbsp;Miaorui Yang ,&nbsp;Hong Jiang ,&nbsp;Yonggang Xu","doi":"10.1016/j.ress.2025.111657","DOIUrl":null,"url":null,"abstract":"<div><div>As one of the most failure-prone critical components in rotating machinery, rolling bearings generate fault signatures exhibiting energy concentration in spectral distributions, thereby offering significant opportunities for deploying one-dimensional signal decomposition techniques in condition monitoring applications. To address the enduring challenge of weak fault feature extraction in practical bearing diagnostics, this study proposes a Harmonic Fourier Decomposition (HFD) framework. The methodology derives mode boundaries through Fourier trend analysis of power spectral density (PSD), effectively reducing computational complexity and eliminating spurious components. A zero-phase Fourier filter bank is employed for frequency-band segmentation, achieving simultaneous minimization of spectral leakage and enhancement of computational efficiency. Furthermore, Harmonic Spectral Kurtosis (HSK) is innovatively integrated to quantify cyclostationary impulse components while suppressing transient interference and background noise. Experimental validation using both simulated signals and bearing test-rig data confirms the method's capability to reliably identify localized defects in inner raceways and outer raceways.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"266 ","pages":"Article 111657"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic Fourier decomposition and its application in fault identification of rotating machinery system\",\"authors\":\"Kun Zhang ,&nbsp;Jiayi Fan ,&nbsp;Miaorui Yang ,&nbsp;Hong Jiang ,&nbsp;Yonggang Xu\",\"doi\":\"10.1016/j.ress.2025.111657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As one of the most failure-prone critical components in rotating machinery, rolling bearings generate fault signatures exhibiting energy concentration in spectral distributions, thereby offering significant opportunities for deploying one-dimensional signal decomposition techniques in condition monitoring applications. To address the enduring challenge of weak fault feature extraction in practical bearing diagnostics, this study proposes a Harmonic Fourier Decomposition (HFD) framework. The methodology derives mode boundaries through Fourier trend analysis of power spectral density (PSD), effectively reducing computational complexity and eliminating spurious components. A zero-phase Fourier filter bank is employed for frequency-band segmentation, achieving simultaneous minimization of spectral leakage and enhancement of computational efficiency. Furthermore, Harmonic Spectral Kurtosis (HSK) is innovatively integrated to quantify cyclostationary impulse components while suppressing transient interference and background noise. Experimental validation using both simulated signals and bearing test-rig data confirms the method's capability to reliably identify localized defects in inner raceways and outer raceways.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"266 \",\"pages\":\"Article 111657\"},\"PeriodicalIF\":11.0000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025008579\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025008579","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

摘要

作为旋转机械中最容易发生故障的关键部件之一,滚动轴承产生的故障特征在频谱分布中表现出能量集中,从而为在状态监测应用中部署一维信号分解技术提供了重要的机会。为了解决实际轴承诊断中弱故障特征提取的长期挑战,本研究提出了谐波傅立叶分解(HFD)框架。该方法通过功率谱密度(PSD)的傅里叶趋势分析得出模式边界,有效地降低了计算复杂度并消除了杂散分量。采用零相位傅立叶滤波器组进行频段分割,实现了频谱泄漏最小化的同时,提高了计算效率。此外,创新地集成了谐波谱峰度(HSK)来量化循环平稳脉冲分量,同时抑制瞬态干扰和背景噪声。使用模拟信号和轴承试验台数据进行的实验验证证实了该方法能够可靠地识别内滚道和外滚道的局部缺陷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic Fourier decomposition and its application in fault identification of rotating machinery system
As one of the most failure-prone critical components in rotating machinery, rolling bearings generate fault signatures exhibiting energy concentration in spectral distributions, thereby offering significant opportunities for deploying one-dimensional signal decomposition techniques in condition monitoring applications. To address the enduring challenge of weak fault feature extraction in practical bearing diagnostics, this study proposes a Harmonic Fourier Decomposition (HFD) framework. The methodology derives mode boundaries through Fourier trend analysis of power spectral density (PSD), effectively reducing computational complexity and eliminating spurious components. A zero-phase Fourier filter bank is employed for frequency-band segmentation, achieving simultaneous minimization of spectral leakage and enhancement of computational efficiency. Furthermore, Harmonic Spectral Kurtosis (HSK) is innovatively integrated to quantify cyclostationary impulse components while suppressing transient interference and background noise. Experimental validation using both simulated signals and bearing test-rig data confirms the method's capability to reliably identify localized defects in inner raceways and outer raceways.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信