Yongqiang Zhang , Kai Li , Nazarii Boichuk , Denys Pustovyi , Valeriia Chekubasheva , Hanlin Long , Mykhailo Petrychuk , Svetlana Vitusevich
{"title":"带领结天线的硅纳米线场效应晶体管生物传感器","authors":"Yongqiang Zhang , Kai Li , Nazarii Boichuk , Denys Pustovyi , Valeriia Chekubasheva , Hanlin Long , Mykhailo Petrychuk , Svetlana Vitusevich","doi":"10.1016/j.sse.2025.109230","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we fabricated high-quality, liquid gate-all-around silicon nanowire (NW) field-effect transistor (FET) biosensors with a gold bowtie antenna using a silicon-on-insulator (SOI) wafer. The electrical and noise properties of these novel NW FETs were investigated under 940 nm light-emitting diode (LED) optical excitation in different solutions. A two-level signal (TLS) that is useful for biosensing was successfully activated at the light excitation only. The detection of repeatable fluctuations in current, manifested as minor peaks in the I–V curves under infrared illumination, confirms the activation of a TLS in the biosensors. The TLS demonstrates a linear dependence of its amplitude in relation to intensity. Moreover, we performed TLS studies in MgCl<sub>2</sub> solutions of different concentrations. The results indicate that the FET devices incorporating a gold antenna have considerable potential for the excitation of TLS, thus allowing the sensitivity of the biosensors to be about 300 % enhanced.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109230"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Silicon nanowire field-effect transistor biosensors with bowtie antenna\",\"authors\":\"Yongqiang Zhang , Kai Li , Nazarii Boichuk , Denys Pustovyi , Valeriia Chekubasheva , Hanlin Long , Mykhailo Petrychuk , Svetlana Vitusevich\",\"doi\":\"10.1016/j.sse.2025.109230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we fabricated high-quality, liquid gate-all-around silicon nanowire (NW) field-effect transistor (FET) biosensors with a gold bowtie antenna using a silicon-on-insulator (SOI) wafer. The electrical and noise properties of these novel NW FETs were investigated under 940 nm light-emitting diode (LED) optical excitation in different solutions. A two-level signal (TLS) that is useful for biosensing was successfully activated at the light excitation only. The detection of repeatable fluctuations in current, manifested as minor peaks in the I–V curves under infrared illumination, confirms the activation of a TLS in the biosensors. The TLS demonstrates a linear dependence of its amplitude in relation to intensity. Moreover, we performed TLS studies in MgCl<sub>2</sub> solutions of different concentrations. The results indicate that the FET devices incorporating a gold antenna have considerable potential for the excitation of TLS, thus allowing the sensitivity of the biosensors to be about 300 % enhanced.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109230\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001753\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001753","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Silicon nanowire field-effect transistor biosensors with bowtie antenna
In this study, we fabricated high-quality, liquid gate-all-around silicon nanowire (NW) field-effect transistor (FET) biosensors with a gold bowtie antenna using a silicon-on-insulator (SOI) wafer. The electrical and noise properties of these novel NW FETs were investigated under 940 nm light-emitting diode (LED) optical excitation in different solutions. A two-level signal (TLS) that is useful for biosensing was successfully activated at the light excitation only. The detection of repeatable fluctuations in current, manifested as minor peaks in the I–V curves under infrared illumination, confirms the activation of a TLS in the biosensors. The TLS demonstrates a linear dependence of its amplitude in relation to intensity. Moreover, we performed TLS studies in MgCl2 solutions of different concentrations. The results indicate that the FET devices incorporating a gold antenna have considerable potential for the excitation of TLS, thus allowing the sensitivity of the biosensors to be about 300 % enhanced.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.