Sahil Sharma , Kumaran Selva , Carlos A. Favela , Bo Yu , Venkat Selvamanickam
{"title":"柔性和轻便的III-V型聚光光伏汽车应用","authors":"Sahil Sharma , Kumaran Selva , Carlos A. Favela , Bo Yu , Venkat Selvamanickam","doi":"10.1016/j.sse.2025.109243","DOIUrl":null,"url":null,"abstract":"<div><div>Use of solar energy for electric power has a huge potential to reduce the carbon footprint caused by greenhouse gases (GHG). While photovoltaics (PV) has been adopted in mainstream terrestrial applications, their implementation in the automotive sector, to make PV-powered vehicles, has been minimal. The existing PV-powered vehicles utilize low-efficiency solar cells, which limits the driving range to 20 miles/day. In this work, we present concentrated photovoltaic (CPV) devices using high-efficiency III-V solar cells for automobile application to realize longer driving range. We have developed inexpensive and flexible III-V PV on metal tapes and integrated them with a durable, flexible PDMS microlens for light concentration. The integrated device showed more than 9 times improvement in current density and power output compared to a solar device without a light concentrator at 1 sun. Use an array of microlens integrated with III-V PV could extend the driving range to 115 miles/day for a vehicle with an electric mileage of 10 miles/kWh. We have also investigated the effect of the light incident angle on device performance to evaluate the optimal tilt angle while mounting the PV module on the vehicle’s roof.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"230 ","pages":"Article 109243"},"PeriodicalIF":1.4000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flexible & light-weight III-V concentrated photovoltaics for automobile application\",\"authors\":\"Sahil Sharma , Kumaran Selva , Carlos A. Favela , Bo Yu , Venkat Selvamanickam\",\"doi\":\"10.1016/j.sse.2025.109243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Use of solar energy for electric power has a huge potential to reduce the carbon footprint caused by greenhouse gases (GHG). While photovoltaics (PV) has been adopted in mainstream terrestrial applications, their implementation in the automotive sector, to make PV-powered vehicles, has been minimal. The existing PV-powered vehicles utilize low-efficiency solar cells, which limits the driving range to 20 miles/day. In this work, we present concentrated photovoltaic (CPV) devices using high-efficiency III-V solar cells for automobile application to realize longer driving range. We have developed inexpensive and flexible III-V PV on metal tapes and integrated them with a durable, flexible PDMS microlens for light concentration. The integrated device showed more than 9 times improvement in current density and power output compared to a solar device without a light concentrator at 1 sun. Use an array of microlens integrated with III-V PV could extend the driving range to 115 miles/day for a vehicle with an electric mileage of 10 miles/kWh. We have also investigated the effect of the light incident angle on device performance to evaluate the optimal tilt angle while mounting the PV module on the vehicle’s roof.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"230 \",\"pages\":\"Article 109243\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125001881\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125001881","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Flexible & light-weight III-V concentrated photovoltaics for automobile application
Use of solar energy for electric power has a huge potential to reduce the carbon footprint caused by greenhouse gases (GHG). While photovoltaics (PV) has been adopted in mainstream terrestrial applications, their implementation in the automotive sector, to make PV-powered vehicles, has been minimal. The existing PV-powered vehicles utilize low-efficiency solar cells, which limits the driving range to 20 miles/day. In this work, we present concentrated photovoltaic (CPV) devices using high-efficiency III-V solar cells for automobile application to realize longer driving range. We have developed inexpensive and flexible III-V PV on metal tapes and integrated them with a durable, flexible PDMS microlens for light concentration. The integrated device showed more than 9 times improvement in current density and power output compared to a solar device without a light concentrator at 1 sun. Use an array of microlens integrated with III-V PV could extend the driving range to 115 miles/day for a vehicle with an electric mileage of 10 miles/kWh. We have also investigated the effect of the light incident angle on device performance to evaluate the optimal tilt angle while mounting the PV module on the vehicle’s roof.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.