高温应力下Cu柱/Ni/Sn微凸起中Ni3Sn4层生长行为研究

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Hao Yu , Yanqiong Yuan , Jian Wang , Linhua Liu , Zhiwei Fu , Jia-Yue Yang
{"title":"高温应力下Cu柱/Ni/Sn微凸起中Ni3Sn4层生长行为研究","authors":"Hao Yu ,&nbsp;Yanqiong Yuan ,&nbsp;Jian Wang ,&nbsp;Linhua Liu ,&nbsp;Zhiwei Fu ,&nbsp;Jia-Yue Yang","doi":"10.1016/j.mssp.2025.110058","DOIUrl":null,"url":null,"abstract":"<div><div>Based on the numerical analysis of Ni atomic thermal diffusion flux, a kinetic model for the growth of the Ni<sub>3</sub>Sn<sub>4</sub> intermetallic compound at the Cu pillar/Ni/Sn microbump interface under high-temperature stress is established. Through in-situ microscopic comparative analysis of test samples at 100 °C, 125 °C and 150 °C over varying time intervals, it is observed that at 150 °C Ni<sub>3</sub>Sn<sub>4</sub> exhibits pronounced outward protrusion due to volumetric expansion. The maximum deviation between the model-predicted and experimentally measured Ni<sub>3</sub>Sn<sub>4</sub> thickness is only 0.244 μm (14.8 %). Further analysis of the Ni<sub>3</sub>Sn<sub>4</sub> growth behavior based on the model reveals that its growth rate decreases progressively with increasing thickness. As the Ni<sub>3</sub>Sn<sub>4</sub> thickness increases from 600 nm to 1600 nm, its growth rates at 100 °C, 125 °C, and 150 °C decrease from 0.10 nm/h, 1.22 nm/h, and 7.79 nm/h to 0.04 nm/h, 0.45 nm/h, and 2.93 nm/h, respectively, resulting in a parabolic growth trend of Ni<sub>3</sub>Sn<sub>4</sub> thickness over time. The growth rate of Ni<sub>3</sub>Sn<sub>4</sub> exhibits an exponential increase as a function of temperature. The temperatures corresponding to growth rates below 0.01 nm/h and above 1 nm/h are defined as the inflection point temperatures of “slow-growth” and “explosive-growth” modes, respectively. Since the growth rate of Ni<sub>3</sub>Sn<sub>4</sub> gradually decreases with increasing thickness, the two inflection point temperatures also vary with the Ni<sub>3</sub>Sn<sub>4</sub> thickness.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"201 ","pages":"Article 110058"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the growth behavior of Ni3Sn4 layer in Cu pillar/Ni/Sn microbump under high-temperature stress\",\"authors\":\"Hao Yu ,&nbsp;Yanqiong Yuan ,&nbsp;Jian Wang ,&nbsp;Linhua Liu ,&nbsp;Zhiwei Fu ,&nbsp;Jia-Yue Yang\",\"doi\":\"10.1016/j.mssp.2025.110058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Based on the numerical analysis of Ni atomic thermal diffusion flux, a kinetic model for the growth of the Ni<sub>3</sub>Sn<sub>4</sub> intermetallic compound at the Cu pillar/Ni/Sn microbump interface under high-temperature stress is established. Through in-situ microscopic comparative analysis of test samples at 100 °C, 125 °C and 150 °C over varying time intervals, it is observed that at 150 °C Ni<sub>3</sub>Sn<sub>4</sub> exhibits pronounced outward protrusion due to volumetric expansion. The maximum deviation between the model-predicted and experimentally measured Ni<sub>3</sub>Sn<sub>4</sub> thickness is only 0.244 μm (14.8 %). Further analysis of the Ni<sub>3</sub>Sn<sub>4</sub> growth behavior based on the model reveals that its growth rate decreases progressively with increasing thickness. As the Ni<sub>3</sub>Sn<sub>4</sub> thickness increases from 600 nm to 1600 nm, its growth rates at 100 °C, 125 °C, and 150 °C decrease from 0.10 nm/h, 1.22 nm/h, and 7.79 nm/h to 0.04 nm/h, 0.45 nm/h, and 2.93 nm/h, respectively, resulting in a parabolic growth trend of Ni<sub>3</sub>Sn<sub>4</sub> thickness over time. The growth rate of Ni<sub>3</sub>Sn<sub>4</sub> exhibits an exponential increase as a function of temperature. The temperatures corresponding to growth rates below 0.01 nm/h and above 1 nm/h are defined as the inflection point temperatures of “slow-growth” and “explosive-growth” modes, respectively. Since the growth rate of Ni<sub>3</sub>Sn<sub>4</sub> gradually decreases with increasing thickness, the two inflection point temperatures also vary with the Ni<sub>3</sub>Sn<sub>4</sub> thickness.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"201 \",\"pages\":\"Article 110058\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369800125007954\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125007954","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

基于Ni原子热扩散通量的数值分析,建立了高温应力下Cu柱/Ni/Sn微碰撞界面Ni3Sn4金属间化合物生长的动力学模型。通过对试样在100°C、125°C和150°C不同时间间隔下的原位显微对比分析,观察到在150°C时,Ni3Sn4由于体积膨胀表现出明显的向外突出。模型预测的Ni3Sn4厚度与实验测量的最大偏差仅为0.244 μm(14.8%)。基于该模型进一步分析Ni3Sn4的生长行为,发现其生长速率随厚度的增加而逐渐降低。随着Ni3Sn4厚度从600 nm增加到1600 nm,其在100°C、125°C和150°C下的生长速率分别从0.10 nm/h、1.22 nm/h和7.79 nm/h下降到0.04 nm/h、0.45 nm/h和2.93 nm/h,导致Ni3Sn4厚度随时间呈抛物线增长趋势。Ni3Sn4的生长速率随温度呈指数增长。生长速率低于0.01 nm/h和高于1 nm/h对应的温度分别被定义为“慢生长”和“爆炸生长”模式的拐点温度。由于Ni3Sn4的生长速率随着厚度的增加而逐渐降低,所以两个拐点温度也随着Ni3Sn4厚度的增加而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the growth behavior of Ni3Sn4 layer in Cu pillar/Ni/Sn microbump under high-temperature stress
Based on the numerical analysis of Ni atomic thermal diffusion flux, a kinetic model for the growth of the Ni3Sn4 intermetallic compound at the Cu pillar/Ni/Sn microbump interface under high-temperature stress is established. Through in-situ microscopic comparative analysis of test samples at 100 °C, 125 °C and 150 °C over varying time intervals, it is observed that at 150 °C Ni3Sn4 exhibits pronounced outward protrusion due to volumetric expansion. The maximum deviation between the model-predicted and experimentally measured Ni3Sn4 thickness is only 0.244 μm (14.8 %). Further analysis of the Ni3Sn4 growth behavior based on the model reveals that its growth rate decreases progressively with increasing thickness. As the Ni3Sn4 thickness increases from 600 nm to 1600 nm, its growth rates at 100 °C, 125 °C, and 150 °C decrease from 0.10 nm/h, 1.22 nm/h, and 7.79 nm/h to 0.04 nm/h, 0.45 nm/h, and 2.93 nm/h, respectively, resulting in a parabolic growth trend of Ni3Sn4 thickness over time. The growth rate of Ni3Sn4 exhibits an exponential increase as a function of temperature. The temperatures corresponding to growth rates below 0.01 nm/h and above 1 nm/h are defined as the inflection point temperatures of “slow-growth” and “explosive-growth” modes, respectively. Since the growth rate of Ni3Sn4 gradually decreases with increasing thickness, the two inflection point temperatures also vary with the Ni3Sn4 thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信