用Shack-Hartmann波前传感器测量电线爆炸低密度等离子体中的电子密度。

IF 1.7 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Yiming Zhao, Jian Wu, Zhiyuan Jiang, Wei Wang, Zhenyu Wang, Yang Li, Huantong Shi, Xingwen Li, Aici Qiu
{"title":"用Shack-Hartmann波前传感器测量电线爆炸低密度等离子体中的电子密度。","authors":"Yiming Zhao, Jian Wu, Zhiyuan Jiang, Wei Wang, Zhenyu Wang, Yang Li, Huantong Shi, Xingwen Li, Aici Qiu","doi":"10.1063/5.0270669","DOIUrl":null,"url":null,"abstract":"<p><p>Measuring the electron density of low-density plasma has long been a challenge, as traditional diagnostic techniques often lack sufficient sensitivity or spatial resolution. To address this, this paper presents an electron density diagnostic method for corona plasma generated by electrical wire explosion, based on a Shack-Hartmann wavefront sensor. The diagnostic system integrates an 8 ns, 532 nm nanosecond pulsed laser, a 400 mm focal length lens array, and a high-resolution charge-coupled device camera. By integrating the proposed neural network methods with micro-lens optical simulations, we achieved sub-pixel-level centroid localization of the focal spot, reducing shift errors by 21% compared to conventional convolutional neural network methods and achieving sub-pixel accuracy with an error of only 0.25 pixels. The theoretical sensitivity of the system reaches 2 × 1015 cm-2. In experiments using a silver-wire load under pre-pulse conditions, this diagnostic technique demonstrated strong agreement with laser interferometry results in high density regions. In low-density regions, the electron density measured at 4.4 mm from the wire axis reached a minimum of 2.2 × 1016 cm-2, offering a broader spatial range for plasma electron density diagnostics compared to laser interferometry. This method effectively captured the electron density distribution of the corona plasma formed under pre-pulse conditions. Future work will focus on further optimizing the experimental system to reduce sources of error and extending the application of this technique to large-scale pulsed power facilities for diagnosing the formation and parameter distribution of low-density electrode plasmas.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":"96 9","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron density measurement in low-density plasma of electrical wire explosion using a Shack-Hartmann wavefront sensor.\",\"authors\":\"Yiming Zhao, Jian Wu, Zhiyuan Jiang, Wei Wang, Zhenyu Wang, Yang Li, Huantong Shi, Xingwen Li, Aici Qiu\",\"doi\":\"10.1063/5.0270669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Measuring the electron density of low-density plasma has long been a challenge, as traditional diagnostic techniques often lack sufficient sensitivity or spatial resolution. To address this, this paper presents an electron density diagnostic method for corona plasma generated by electrical wire explosion, based on a Shack-Hartmann wavefront sensor. The diagnostic system integrates an 8 ns, 532 nm nanosecond pulsed laser, a 400 mm focal length lens array, and a high-resolution charge-coupled device camera. By integrating the proposed neural network methods with micro-lens optical simulations, we achieved sub-pixel-level centroid localization of the focal spot, reducing shift errors by 21% compared to conventional convolutional neural network methods and achieving sub-pixel accuracy with an error of only 0.25 pixels. The theoretical sensitivity of the system reaches 2 × 1015 cm-2. In experiments using a silver-wire load under pre-pulse conditions, this diagnostic technique demonstrated strong agreement with laser interferometry results in high density regions. In low-density regions, the electron density measured at 4.4 mm from the wire axis reached a minimum of 2.2 × 1016 cm-2, offering a broader spatial range for plasma electron density diagnostics compared to laser interferometry. This method effectively captured the electron density distribution of the corona plasma formed under pre-pulse conditions. Future work will focus on further optimizing the experimental system to reduce sources of error and extending the application of this technique to large-scale pulsed power facilities for diagnosing the formation and parameter distribution of low-density electrode plasmas.</p>\",\"PeriodicalId\":21111,\"journal\":{\"name\":\"Review of Scientific Instruments\",\"volume\":\"96 9\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Scientific Instruments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0270669\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0270669","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

由于传统的诊断技术往往缺乏足够的灵敏度和空间分辨率,测量低密度等离子体的电子密度一直是一个挑战。为了解决这一问题,本文提出了一种基于Shack-Hartmann波前传感器的电线爆炸产生的电晕等离子体电子密度诊断方法。该诊断系统集成了8 ns, 532 nm纳秒脉冲激光器,400 mm焦距透镜阵列和高分辨率电荷耦合器件相机。通过将所提出的神经网络方法与微透镜光学模拟相结合,我们实现了焦斑的亚像素级质心定位,与传统卷积神经网络方法相比,偏移误差减少了21%,实现了亚像素级精度,误差仅为0.25个像素。系统的理论灵敏度达到2 × 1015 cm-2。在预脉冲条件下使用银线负载的实验中,该诊断技术与高密度区域的激光干涉测量结果显示出强烈的一致性。在低密度区域,距离线轴4.4 mm处测量到的电子密度最小达到2.2 × 1016 cm-2,与激光干涉测量相比,为等离子体电子密度诊断提供了更宽的空间范围。该方法有效地捕获了在预脉冲条件下形成的电晕等离子体的电子密度分布。未来的工作重点是进一步优化实验系统,减少误差来源,并将该技术应用于大型脉冲功率设备,用于诊断低密度电极等离子体的形成和参数分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electron density measurement in low-density plasma of electrical wire explosion using a Shack-Hartmann wavefront sensor.

Measuring the electron density of low-density plasma has long been a challenge, as traditional diagnostic techniques often lack sufficient sensitivity or spatial resolution. To address this, this paper presents an electron density diagnostic method for corona plasma generated by electrical wire explosion, based on a Shack-Hartmann wavefront sensor. The diagnostic system integrates an 8 ns, 532 nm nanosecond pulsed laser, a 400 mm focal length lens array, and a high-resolution charge-coupled device camera. By integrating the proposed neural network methods with micro-lens optical simulations, we achieved sub-pixel-level centroid localization of the focal spot, reducing shift errors by 21% compared to conventional convolutional neural network methods and achieving sub-pixel accuracy with an error of only 0.25 pixels. The theoretical sensitivity of the system reaches 2 × 1015 cm-2. In experiments using a silver-wire load under pre-pulse conditions, this diagnostic technique demonstrated strong agreement with laser interferometry results in high density regions. In low-density regions, the electron density measured at 4.4 mm from the wire axis reached a minimum of 2.2 × 1016 cm-2, offering a broader spatial range for plasma electron density diagnostics compared to laser interferometry. This method effectively captured the electron density distribution of the corona plasma formed under pre-pulse conditions. Future work will focus on further optimizing the experimental system to reduce sources of error and extending the application of this technique to large-scale pulsed power facilities for diagnosing the formation and parameter distribution of low-density electrode plasmas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信