具有优异催化性能的ZnTe/ZrS2异质结Z-scheme光催化剂的理论设计

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Peijie Cheng, Xing Wei, Zhuangzhuang Dai, Yan Zhang, Jian Liu, Ye Tian and Li Duan
{"title":"具有优异催化性能的ZnTe/ZrS2异质结Z-scheme光催化剂的理论设计","authors":"Peijie Cheng, Xing Wei, Zhuangzhuang Dai, Yan Zhang, Jian Liu, Ye Tian and Li Duan","doi":"10.1039/D5TC01424G","DOIUrl":null,"url":null,"abstract":"<p >This study establishes a vertically stacked ZnTe/ZrS<small><sub>2</sub></small> heterojunction through first-principles calculations, systematically investigating its structural, electronic, and photocatalytic mechanisms. The results reveal that the ZnTe/ZrS<small><sub>2</sub></small> heterojunction exhibits a smaller bandgap than both ZnTe and ZrS<small><sub>2</sub></small> monolayers, featuring band alignment (type-II) enabled by the built-in electric field (BIEF) oriented from ZnTe towards ZrS<small><sub>2</sub></small>. Under −4% to 4% twin-axis stress/tensile deformation, its energy level aligns with the photocatalytic water-splitting potentials at pH = 0. This heterojunction demonstrates an exceptional light absorption capability (2.234 × 10<small><sup>5</sup></small> cm<small><sup>−1</sup></small>) and achieves an energy conversion efficiency of 14.296%, confirming its efficient photon energy utilization. Additionally, the strain-induced enhancement of visible light absorption further expands its applicability. These findings collectively establish the ZnTe/ZrS<small><sub>2</sub></small> heterojunction as a highly prospective material for advanced photocatalytic water-splitting applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 35","pages":" 18381-18393"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical design of a Z-scheme photocatalyst for water splitting with excellent catalytic performance: ZnTe/ZrS2 heterojunction\",\"authors\":\"Peijie Cheng, Xing Wei, Zhuangzhuang Dai, Yan Zhang, Jian Liu, Ye Tian and Li Duan\",\"doi\":\"10.1039/D5TC01424G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study establishes a vertically stacked ZnTe/ZrS<small><sub>2</sub></small> heterojunction through first-principles calculations, systematically investigating its structural, electronic, and photocatalytic mechanisms. The results reveal that the ZnTe/ZrS<small><sub>2</sub></small> heterojunction exhibits a smaller bandgap than both ZnTe and ZrS<small><sub>2</sub></small> monolayers, featuring band alignment (type-II) enabled by the built-in electric field (BIEF) oriented from ZnTe towards ZrS<small><sub>2</sub></small>. Under −4% to 4% twin-axis stress/tensile deformation, its energy level aligns with the photocatalytic water-splitting potentials at pH = 0. This heterojunction demonstrates an exceptional light absorption capability (2.234 × 10<small><sup>5</sup></small> cm<small><sup>−1</sup></small>) and achieves an energy conversion efficiency of 14.296%, confirming its efficient photon energy utilization. Additionally, the strain-induced enhancement of visible light absorption further expands its applicability. These findings collectively establish the ZnTe/ZrS<small><sub>2</sub></small> heterojunction as a highly prospective material for advanced photocatalytic water-splitting applications.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 35\",\"pages\":\" 18381-18393\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01424g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01424g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过第一性原理计算建立了一个垂直堆叠的ZnTe/ZrS2异质结,系统地研究了其结构、电子和光催化机制。结果表明,ZnTe/ZrS2异质结具有比ZnTe和ZrS2单层更小的带隙,具有从ZnTe向ZrS2取向的内置电场(BIEF)实现的带对准(ii型)。在- 4%至4%的双轴应力/拉伸变形下,其能级与pH = 0时光催化水裂解电位一致。该异质结具有出色的光吸收能力(2.234 × 105 cm−1),实现了14.296%的能量转换效率,证实了其高效的光子能量利用。此外,应变诱导的可见光吸收增强进一步扩大了其适用性。这些发现共同确立了ZnTe/ZrS2异质结作为先进光催化水分解应用的极具前景的材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical design of a Z-scheme photocatalyst for water splitting with excellent catalytic performance: ZnTe/ZrS2 heterojunction

Theoretical design of a Z-scheme photocatalyst for water splitting with excellent catalytic performance: ZnTe/ZrS2 heterojunction

This study establishes a vertically stacked ZnTe/ZrS2 heterojunction through first-principles calculations, systematically investigating its structural, electronic, and photocatalytic mechanisms. The results reveal that the ZnTe/ZrS2 heterojunction exhibits a smaller bandgap than both ZnTe and ZrS2 monolayers, featuring band alignment (type-II) enabled by the built-in electric field (BIEF) oriented from ZnTe towards ZrS2. Under −4% to 4% twin-axis stress/tensile deformation, its energy level aligns with the photocatalytic water-splitting potentials at pH = 0. This heterojunction demonstrates an exceptional light absorption capability (2.234 × 105 cm−1) and achieves an energy conversion efficiency of 14.296%, confirming its efficient photon energy utilization. Additionally, the strain-induced enhancement of visible light absorption further expands its applicability. These findings collectively establish the ZnTe/ZrS2 heterojunction as a highly prospective material for advanced photocatalytic water-splitting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信