{"title":"用于非冷却中红外探测的高灵敏度外延Ge/PbSe/CdSe/ bi2se3p +pBn+势垒异质结","authors":"Leisheng Su, Yun Liu, Weili Liu, Dong Yang, Kerun Chen, Yiming Yang, Haofei Shi, Chang Yang, Deping Huang and Jijun Qiu","doi":"10.1039/D5TC01859E","DOIUrl":null,"url":null,"abstract":"<p >The inherent physical properties of common materials and fabrication techniques pose significant challenges for realizing low dark current and high sensitivity uncooled mid-wave infrared (MWIR) detectors. In this article, we propose and demonstrate a novel p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier structure based on an epitaxial Ge/PbSe/CdSe/Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> single crystal heterojunction to suppress dark current at room temperature. The experimental results indicate that a lower dark current of 8.49 mA cm<small><sup>−2</sup></small> is achieved for the p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier photodetector. Moreover, this barrier device exhibits superior performance with a detectivity of 1.43 × 10<small><sup>10</sup></small> cm Hz<small><sup>1/2</sup></small> W<small><sup>−1</sup></small> and a responsivity of 1.41 A W<small><sup>−1</sup></small> at room temperature. This work highlights the potential of PbSe-based p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier structures for room temperature IR detection, providing both an industrialized technical solution and theoretical support for next-generation high performance uncooled MWIR detectors.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 35","pages":" 18108-18117"},"PeriodicalIF":5.1000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A high-sensitivity epitaxial Ge/PbSe/CdSe/Bi2Se3 p+pBn+ barrier heterojunction for uncooled middle infrared detection†\",\"authors\":\"Leisheng Su, Yun Liu, Weili Liu, Dong Yang, Kerun Chen, Yiming Yang, Haofei Shi, Chang Yang, Deping Huang and Jijun Qiu\",\"doi\":\"10.1039/D5TC01859E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The inherent physical properties of common materials and fabrication techniques pose significant challenges for realizing low dark current and high sensitivity uncooled mid-wave infrared (MWIR) detectors. In this article, we propose and demonstrate a novel p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier structure based on an epitaxial Ge/PbSe/CdSe/Bi<small><sub>2</sub></small>Se<small><sub>3</sub></small> single crystal heterojunction to suppress dark current at room temperature. The experimental results indicate that a lower dark current of 8.49 mA cm<small><sup>−2</sup></small> is achieved for the p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier photodetector. Moreover, this barrier device exhibits superior performance with a detectivity of 1.43 × 10<small><sup>10</sup></small> cm Hz<small><sup>1/2</sup></small> W<small><sup>−1</sup></small> and a responsivity of 1.41 A W<small><sup>−1</sup></small> at room temperature. This work highlights the potential of PbSe-based p<small><sup>+</sup></small>pBn<small><sup>+</sup></small> barrier structures for room temperature IR detection, providing both an industrialized technical solution and theoretical support for next-generation high performance uncooled MWIR detectors.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 35\",\"pages\":\" 18108-18117\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01859e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d5tc01859e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
普通材料固有的物理性质和制造技术对实现低暗电流、高灵敏度的非冷却中波红外探测器提出了重大挑战。在本文中,我们提出并演示了一种基于外延Ge/PbSe/CdSe/Bi2Se3单晶异质结的新型p+pBn+势垒结构,以抑制室温下的暗电流。实验结果表明,p+pBn+势垒光电探测器的暗电流较低,为8.49 mA cm−2。此外,该阻挡器件在室温下的探测率为1.43 × 1010 cm Hz1/2 W−1,响应率为1.41 a W−1,表现出优异的性能。这项工作强调了基于pbse的p+pBn+势垒结构在室温红外探测中的潜力,为下一代高性能非冷却MWIR探测器提供了工业化技术解决方案和理论支持。
A high-sensitivity epitaxial Ge/PbSe/CdSe/Bi2Se3 p+pBn+ barrier heterojunction for uncooled middle infrared detection†
The inherent physical properties of common materials and fabrication techniques pose significant challenges for realizing low dark current and high sensitivity uncooled mid-wave infrared (MWIR) detectors. In this article, we propose and demonstrate a novel p+pBn+ barrier structure based on an epitaxial Ge/PbSe/CdSe/Bi2Se3 single crystal heterojunction to suppress dark current at room temperature. The experimental results indicate that a lower dark current of 8.49 mA cm−2 is achieved for the p+pBn+ barrier photodetector. Moreover, this barrier device exhibits superior performance with a detectivity of 1.43 × 1010 cm Hz1/2 W−1 and a responsivity of 1.41 A W−1 at room temperature. This work highlights the potential of PbSe-based p+pBn+ barrier structures for room temperature IR detection, providing both an industrialized technical solution and theoretical support for next-generation high performance uncooled MWIR detectors.
期刊介绍:
The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study:
Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability.
Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine.
Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices.
Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive.
Bioelectronics
Conductors
Detectors
Dielectrics
Displays
Ferroelectrics
Lasers
LEDs
Lighting
Liquid crystals
Memory
Metamaterials
Multiferroics
Photonics
Photovoltaics
Semiconductors
Sensors
Single molecule conductors
Spintronics
Superconductors
Thermoelectrics
Topological insulators
Transistors