{"title":"外诱导单轴应力对无结纳米线场效应晶体管电性能的影响","authors":"Nitish Kumar;Ankur Gupta;Pushpapraj Singh","doi":"10.1109/TDMR.2025.3581604","DOIUrl":null,"url":null,"abstract":"The uniaxial tensile mechanical stress (MS) is induced up to 1.4 GPa on the channel of the twin junctionless nanowire (JL-NW) gate-all-around (GAA) field-effect transistors (FETs) using a four-point bending technique. The variation of the electrical parameters is measured before and during induced MS to analyze the performance. The ON-state current, carrier mobility, threshold voltage, and subthreshold swing are directly proportional to the induced MS due to the reduced energy band gap and intervalley scattering effect. The reduced subthreshold swing indicates low power consumption and better switching ability, whereas the higher OFF-state current leads to slightly increased standby power consumption, representing a trade-off for low-power logic applications. In addition, the change of drain current shows highly piezoresistive sensing ability in nanoelectromechanical sensor applications. Thus, this study demonstrates the importance of mechanical stress engineering for performance improvement in non-planar nanowire devices, piezoresistive sensing applications, and device reliability.","PeriodicalId":448,"journal":{"name":"IEEE Transactions on Device and Materials Reliability","volume":"25 3","pages":"677-683"},"PeriodicalIF":2.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Externally Induced Uniaxial Stress on the Electrical Performance of the Junctionless Nanowire Field-Effect Transistors\",\"authors\":\"Nitish Kumar;Ankur Gupta;Pushpapraj Singh\",\"doi\":\"10.1109/TDMR.2025.3581604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The uniaxial tensile mechanical stress (MS) is induced up to 1.4 GPa on the channel of the twin junctionless nanowire (JL-NW) gate-all-around (GAA) field-effect transistors (FETs) using a four-point bending technique. The variation of the electrical parameters is measured before and during induced MS to analyze the performance. The ON-state current, carrier mobility, threshold voltage, and subthreshold swing are directly proportional to the induced MS due to the reduced energy band gap and intervalley scattering effect. The reduced subthreshold swing indicates low power consumption and better switching ability, whereas the higher OFF-state current leads to slightly increased standby power consumption, representing a trade-off for low-power logic applications. In addition, the change of drain current shows highly piezoresistive sensing ability in nanoelectromechanical sensor applications. Thus, this study demonstrates the importance of mechanical stress engineering for performance improvement in non-planar nanowire devices, piezoresistive sensing applications, and device reliability.\",\"PeriodicalId\":448,\"journal\":{\"name\":\"IEEE Transactions on Device and Materials Reliability\",\"volume\":\"25 3\",\"pages\":\"677-683\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Device and Materials Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11045653/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Device and Materials Reliability","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11045653/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Impact of Externally Induced Uniaxial Stress on the Electrical Performance of the Junctionless Nanowire Field-Effect Transistors
The uniaxial tensile mechanical stress (MS) is induced up to 1.4 GPa on the channel of the twin junctionless nanowire (JL-NW) gate-all-around (GAA) field-effect transistors (FETs) using a four-point bending technique. The variation of the electrical parameters is measured before and during induced MS to analyze the performance. The ON-state current, carrier mobility, threshold voltage, and subthreshold swing are directly proportional to the induced MS due to the reduced energy band gap and intervalley scattering effect. The reduced subthreshold swing indicates low power consumption and better switching ability, whereas the higher OFF-state current leads to slightly increased standby power consumption, representing a trade-off for low-power logic applications. In addition, the change of drain current shows highly piezoresistive sensing ability in nanoelectromechanical sensor applications. Thus, this study demonstrates the importance of mechanical stress engineering for performance improvement in non-planar nanowire devices, piezoresistive sensing applications, and device reliability.
期刊介绍:
The scope of the publication includes, but is not limited to Reliability of: Devices, Materials, Processes, Interfaces, Integrated Microsystems (including MEMS & Sensors), Transistors, Technology (CMOS, BiCMOS, etc.), Integrated Circuits (IC, SSI, MSI, LSI, ULSI, ELSI, etc.), Thin Film Transistor Applications. The measurement and understanding of the reliability of such entities at each phase, from the concept stage through research and development and into manufacturing scale-up, provides the overall database on the reliability of the devices, materials, processes, package and other necessities for the successful introduction of a product to market. This reliability database is the foundation for a quality product, which meets customer expectation. A product so developed has high reliability. High quality will be achieved because product weaknesses will have been found (root cause analysis) and designed out of the final product. This process of ever increasing reliability and quality will result in a superior product. In the end, reliability and quality are not one thing; but in a sense everything, which can be or has to be done to guarantee that the product successfully performs in the field under customer conditions. Our goal is to capture these advances. An additional objective is to focus cross fertilized communication in the state of the art of reliability of electronic materials and devices and provide fundamental understanding of basic phenomena that affect reliability. In addition, the publication is a forum for interdisciplinary studies on reliability. An overall goal is to provide leading edge/state of the art information, which is critically relevant to the creation of reliable products.