基于弱反转电荷供电环振荡器的LIF神经元实现201fj /SOP

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Javier Granizo;Ruben Garvi;Ricardo Carrero;Luis Hernandez
{"title":"基于弱反转电荷供电环振荡器的LIF神经元实现201fj /SOP","authors":"Javier Granizo;Ruben Garvi;Ricardo Carrero;Luis Hernandez","doi":"10.1109/LSSC.2025.3603335","DOIUrl":null,"url":null,"abstract":"This letter presents the experimental results of a leaky-integrate-and-fire neuron (LIF) neuron based on time-domain analog circuitry. This kind of neuron is the core of spiking neural network (SNN) used in edge applications. Edge applications require power-efficient neuron designs whose power consumption is extremely low when idle, and low when in dynamic operation. The proposed neuron complies with the aforementioned requisites by transforming the voltage-based threshold of conventional LIF neurons into a time domain threshold on a quadrature oscillator. In conjunction with a charge-sharing integrator, the proposed neuron shows an energy efficiency of 201 fJ/SOP implemented in <inline-formula> <tex-math>$0.13\\mathbf {\\mu m}$ </tex-math></inline-formula> process.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"249-252"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LIF Neuron Based on a Charge-Powered Ring Oscillator in Weak Inversion Achieving 201 fJ/SOP\",\"authors\":\"Javier Granizo;Ruben Garvi;Ricardo Carrero;Luis Hernandez\",\"doi\":\"10.1109/LSSC.2025.3603335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents the experimental results of a leaky-integrate-and-fire neuron (LIF) neuron based on time-domain analog circuitry. This kind of neuron is the core of spiking neural network (SNN) used in edge applications. Edge applications require power-efficient neuron designs whose power consumption is extremely low when idle, and low when in dynamic operation. The proposed neuron complies with the aforementioned requisites by transforming the voltage-based threshold of conventional LIF neurons into a time domain threshold on a quadrature oscillator. In conjunction with a charge-sharing integrator, the proposed neuron shows an energy efficiency of 201 fJ/SOP implemented in <inline-formula> <tex-math>$0.13\\\\mathbf {\\\\mu m}$ </tex-math></inline-formula> process.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"249-252\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11142853/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11142853/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种基于时域模拟电路的漏积分点火神经元(LIF)的实验结果。这种神经元是用于边缘应用的尖峰神经网络的核心。边缘应用需要高能效的神经元设计,其功耗在空闲时非常低,在动态操作时也很低。所提出的神经元通过将传统LIF神经元的基于电压的阈值转换为正交振荡器的时域阈值来满足上述要求。结合电荷共享积分器,该神经元在$0.13\mathbf {\mu m}$进程中实现了201 fJ/SOP的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LIF Neuron Based on a Charge-Powered Ring Oscillator in Weak Inversion Achieving 201 fJ/SOP
This letter presents the experimental results of a leaky-integrate-and-fire neuron (LIF) neuron based on time-domain analog circuitry. This kind of neuron is the core of spiking neural network (SNN) used in edge applications. Edge applications require power-efficient neuron designs whose power consumption is extremely low when idle, and low when in dynamic operation. The proposed neuron complies with the aforementioned requisites by transforming the voltage-based threshold of conventional LIF neurons into a time domain threshold on a quadrature oscillator. In conjunction with a charge-sharing integrator, the proposed neuron shows an energy efficiency of 201 fJ/SOP implemented in $0.13\mathbf {\mu m}$ process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Solid-State Circuits Letters
IEEE Solid-State Circuits Letters Engineering-Electrical and Electronic Engineering
CiteScore
4.30
自引率
3.70%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信